scholarly journals Augmenting the Transplant Team With Artificial Intelligence: Toward Meaningful AI Use in Solid Organ Transplant

2021 ◽  
Vol 12 ◽  
Author(s):  
Jeffrey Clement ◽  
Angela Q. Maldonado

Advances in systems immunology, such as new biomarkers, offer the potential for highly personalized immunosuppression regimens that could improve patient outcomes. In the future, integrating all of this information with other patient history data will likely have to rely on artificial intelligence (AI). AI agents can help augment transplant decision making by discovering patterns and making predictions for specific patients that are not covered in the literature or in ways that are impossible for humans to anticipate by integrating vast amounts of data (e.g. trending across numerous biomarkers). Similar to other clinical decision support systems, AI may help overcome human biases or judgment errors. However, AI is not widely utilized in transplant to date. In this rapid review, we survey the methods employed in recent research in transplant-related AI applications and identify concerns related to implementing these tools. We identify three key challenges (bias/accuracy, clinical decision process/AI explainability, AI acceptability criteria) holding back AI in transplant. We also identify steps that can be taken in the near term to help advance meaningful use of AI in transplant (forming a Transplant AI Team at each center, establishing clinical and ethical acceptability criteria, and incorporating AI into the Shared Decision Making Model).

2020 ◽  
pp. 167-186
Author(s):  
Steven Walczak

Clinical decision support systems are meant to improve the quality of decision-making in healthcare. Artificial intelligence is the science of creating intelligent systems that solve complex problems at the level of or better than human experts. Combining artificial intelligence methods into clinical decision support will enable the utilization of large quantities of data to produce relevant decision-making information to practitioners. This article examines various artificial intelligence methodologies and shows how they may be incorporated into clinical decision-making systems. A framework for describing artificial intelligence applications in clinical decision support systems is presented.


2020 ◽  
pp. 390-409
Author(s):  
Steven Walczak

Clinical decision support systems are meant to improve the quality of decision-making in healthcare. Artificial intelligence is the science of creating intelligent systems that solve complex problems at the level of or better than human experts. Combining artificial intelligence methods into clinical decision support will enable the utilization of large quantities of data to produce relevant decision-making information to practitioners. This article examines various artificial intelligence methodologies and shows how they may be incorporated into clinical decision-making systems. A framework for describing artificial intelligence applications in clinical decision support systems is presented.


2018 ◽  
Vol 3 (2) ◽  
pp. 31-47 ◽  
Author(s):  
Steven Walczak

Clinical decision support systems are meant to improve the quality of decision-making in healthcare. Artificial intelligence is the science of creating intelligent systems that solve complex problems at the level of or better than human experts. Combining artificial intelligence methods into clinical decision support will enable the utilization of large quantities of data to produce relevant decision-making information to practitioners. This article examines various artificial intelligence methodologies and shows how they may be incorporated into clinical decision-making systems. A framework for describing artificial intelligence applications in clinical decision support systems is presented.


2019 ◽  
Vol 28 (01) ◽  
pp. 047-051
Author(s):  
Chris Paton ◽  
Shinji Kobayashi

Objectives: Artificial Intelligence (AI) offers significant potential for improving healthcare. This paper discusses how an “open science” approach to AI tool development, data sharing, education, and research can support the clinical adoption of AI systems. Method: In response to the call for participation for the 2019 International Medical Informatics Association (IMIA) Yearbook theme issue on AI in healthcare, the IMIA Open Source Working Group conducted a rapid review of recent literature relating to open science and AI in healthcare and discussed how an open science approach could help overcome concerns about the adoption of new AI technology in healthcare settings. Results: The recent literature reveals that open science approaches to AI system development are well established. The ecosystem of software development, data sharing, education, and research in the AI community has, in general, adopted an open science ethos that has driven much of the recent innovation and adoption of new AI techniques. However, within the healthcare domain, adoption may be inhibited by the use of “black-box” AI systems, where only the inputs and outputs of those systems are understood, and clinical effectiveness and implementation studies are missing. Conclusions: As AI-based data analysis and clinical decision support systems begin to be implemented in healthcare systems around the world, further openness of clinical effectiveness and mechanisms of action may be required by safety-conscious healthcare policy-makers to ensure they are clinically effective in real world use.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6209
Author(s):  
Andrei Velichko

Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3–10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems.


2021 ◽  
Author(s):  
Angela Rui ◽  
Srinivas Emani ◽  
Hermano Alexandre Lima Rocha ◽  
Rubina F. Rizvi ◽  
Sergio Ferreira Juaçaba ◽  
...  

UNSTRUCTURED As technology continues to improve, healthcare systems have the opportunity to utilize a variety of innovative tools for decision making that extend beyond traditional clinical decision support systems (CDSSs). The feasibility and efficacy integrating artificial intelligence (AI) systems into medical practice has shown variable success, especially in resource-poor areas. In this paper, we cover the existing challenges surrounding cancer treatment in low-middle income countries (LMICs). By focusing on the implementation of an AI-based CDSS for oncology, we aim to demonstrate how AI can be both beneficial and challenging for cancer management globally. Additionally, we summarize current physician perspectives from China, India, Brazil, Thailand, and Mexico in regard to their experiences and recommendations for improving the system. By doing so, we hope to highlight the need for additional research on user experience and unique cultural barriers for the successful implementation of AI in LMICs.


Author(s):  
Jan Kalina

The complexity of clinical decision-making is immensely increasing with the advent of big data with a clinical relevance. Clinical decision systems represent useful e-health tools applicable to various tasks within the clinical decision-making process. This chapter is devoted to basic principles of clinical decision support systems and their benefits for healthcare and patient safety. Big data is crucial input for clinical decision support systems and is helpful in the task to find the diagnosis, prognosis, and therapy. Statistical challenges of analyzing big data in psychiatry are overviewed, with a particular interest for psychiatry. Various barriers preventing telemedicine tools from expanding to the field of mental health are discussed. The development of decision support systems is claimed here to play a key role in the development of information-based medicine, particularly in psychiatry. Information technology will be ultimately able to combine various information sources including big data to present and enforce a holistic information-based approach to psychiatric care.


2011 ◽  
pp. 1017-1029
Author(s):  
William Claster ◽  
Nader Ghotbi ◽  
Subana Shanmuganathan

There is a treasure trove of hidden information in the textual and narrative data of medical records that can be deciphered by text-mining techniques. The information provided by these methods can provide a basis for medical artificial intelligence and help support or improve clinical decision making by medical doctors. In this paper we extend previous work in an effort to extract meaningful information from free text medical records. We discuss a methodology for the analysis of medical records using some statistical analysis and the Kohonen Self-Organizing Map (SOM). The medical data derive from about 700 pediatric patients’ radiology department records where CT (Computed Tomography) scanning was used as part of a diagnostic exploration. The patients underwent CT scanning (single and multiple) throughout a one-year period in 2004 at the Nagasaki University Medical Hospital. Our approach led to a model based on SOM clusters and statistical analysis which may suggest a strategy for limiting CT scan requests. This is important because radiation at levels ordinarily used for CT scanning may pose significant health risks especially to children.


Sign in / Sign up

Export Citation Format

Share Document