scholarly journals PDGF Promotes Dermal Fibroblast Activation via a Novel Mechanism Mediated by Signaling Through MCHR1

2021 ◽  
Vol 12 ◽  
Author(s):  
Naoko Takamura ◽  
Ludivine Renaud ◽  
Willian Abraham da Silveira ◽  
Carol Feghali-Bostwick

Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy and excessive fibrosis of the skin and internal organs. To this day, no effective treatments to prevent the progression of fibrosis exist, and SSc patients have disabilities and reduced life expectancy. The need to better understand pathways that drive SSc and to find therapeutic targets is urgent. RNA sequencing data from SSc dermal fibroblasts suggested that melanin-concentrating hormone receptor 1 (MCHR1), one of the G protein-coupled receptors regulating emotion and energy metabolism, is abnormally deregulated in SSc. Platelet-derived growth factor (PDGF)-BB stimulation upregulated MCHR1 mRNA and protein levels in normal human dermal fibroblasts (NHDF), and MCHR1 silencing prevented the PDGF-BB-induced expression of the profibrotic factors transforming growth factor beta 1 (TGFβ1) and connective tissue growth factor (CTGF). PDGF-BB bound MCHR1 in membrane fractions of NHDF, and the binding was confirmed using surface plasmon resonance (SPR). MCHR1 inhibition blocked PDGF-BB modulation of intracellular cyclic adenosine monophosphate (cAMP). MCHR1 silencing in NHDF reduced PDGF-BB signaling. In summary, MCHR1 promoted the fibrotic response in NHDF through modulation of TGFβ1 and CTGF production, intracellular cAMP levels, and PDGF-BB-induced signaling pathways, suggesting that MCHR1 plays an important role in mediating the response to PDGF-BB and in the pathogenesis of SSc. Inhibition of MCHR1 should be considered as a novel therapeutic strategy in SSc-associated fibrosis.

1995 ◽  
Vol 108 (3) ◽  
pp. 1251-1261 ◽  
Author(s):  
R.A. Clark ◽  
L.D. Nielsen ◽  
M.P. Welch ◽  
J.M. McPherson

Transforming growth factor-beta, a potent modulator of cell function, induces fibroblasts cultured on plastic to increase collagen synthesis. In 5- and 7-day porcine skin wounds, which have minimal to moderate collagen matrix, respectively, transforming growth factor-beta and type I procollagen were coordinately expressed throughout the granulation tissue. However, in 10-day collagen-rich granulation tissue type I procollagen expression diminished despite persistence of transforming growth factor-beta. To investigate whether collagen matrix attenuates the collagen-synthetic response of fibroblasts to transforming growth factor-beta, we cultured human dermal fibroblasts in conditions that simulate collagen-rich granulation tissue. Therefore, human dermal fibroblasts were suspended in attached collagen gels and collagen and noncollagen production was assayed in the absence and presence of transforming growth factor-beta. Although transforming growth factor-beta stimulated collagen synthesis by fibroblasts cultured in the collagen gels, these fibroblasts consistently produced less collagen than similarly treated fibroblasts cultured on plastic. This phenomenon was not secondary to nonspecific binding of transforming growth factor-beta to the collagen matrix. Fibroblasts cultured in a fibrin gel responded to transforming growth factor-beta similarly to fibroblasts cultured on plastic. Using immunofluorescence probes to type I procollagen, we observed that transforming growth factor-beta increased type I procollagen expression in most fibroblasts cultured on plastic, but only in occasional fibroblasts cultured in collagen gels. From these data we conclude that collagen matrices attenuate the collagen synthetic response of fibroblast to transforming growth factor-beta in vitro and possibly in vivo.


1987 ◽  
Vol 165 (1) ◽  
pp. 251-256 ◽  
Author(s):  
A E Postlethwaite ◽  
J Keski-Oja ◽  
H L Moses ◽  
A H Kang

Transforming growth factor beta (TGF-beta) is a potent chemoattractant in vitro for human dermal fibroblasts. Intact disulfide and perhaps the dimeric structure of TGF-beta is essential for its ability to stimulate chemotactic migration of fibroblasts, since reduction with 2-ME results in a marked loss of its potency as a chemoattractant. Although epidermal growth factor (EGF) appears to be capable of modulating some effects of TGF-beta, it does not alter the chemotactic response of fibroblasts to TGF-beta. Specific polyvalent rabbit antibodies to homogeneously pure TGF-beta block its chemotactic activity but has no effect on the other chemoattractants tested (platelet-derived growth factor, fibronectin, and denatured type I collagen). Since TGF-beta is secreted by a variety of neoplastic and normal cells including platelets, monocytes/macrophages, and lymphocytes, it may play a critical role in vivo in embryogenesis, host response to tumors, and the repair response that follows damage to tissues by immune and nonimmune reactions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Johanna W. Hellinger ◽  
Franziska Schömel ◽  
Judith V. Buse ◽  
Christof Lenz ◽  
Gerd Bauerschmitz ◽  
...  

Abstract An altered consistency of tumor microenvironment facilitates the progression of the tumor towards metastasis. Here we combine data from secretome and proteome analysis using mass spectrometry with microarray data from mesenchymal transformed breast cancer cells (MCF-7-EMT) to elucidate the drivers of epithelial-mesenchymal transition (EMT) and cell invasion. Suppression of connective tissue growth factor (CTGF) reduced invasion in 2D and 3D invasion assays and expression of transforming growth factor-beta-induced protein ig-h3 (TGFBI), Zinc finger E-box-binding homeobox 1 (ZEB1) and lysyl oxidase (LOX), while the adhesion of cell-extracellular matrix (ECM) in mesenchymal transformed breast cancer cells is increased. In contrast, an enhanced expression of CTGF leads to an increased 3D invasion, expression of fibronectin 1 (FN1), secreted protein acidic and cysteine rich (SPARC) and CD44 and a reduced cell ECM adhesion. Gonadotropin-releasing hormone (GnRH) agonist Triptorelin reduces CTGF expression in a Ras homolog family member A (RhoA)-dependent manner. Our results suggest that CTGF drives breast cancer cell invasion in vitro and therefore could be an attractive therapeutic target for drug development to prevent the spread of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document