scholarly journals Seasonal Food Web Dynamics in the Antarctic Benthos of Tethys Bay (Ross Sea): Implications for Biodiversity Persistence Under Different Seasonal Sea-Ice Coverage

2020 ◽  
Vol 7 ◽  
Author(s):  
Simona Sporta Caputi ◽  
Giulio Careddu ◽  
Edoardo Calizza ◽  
Federico Fiorentino ◽  
Deborah Maccapan ◽  
...  

Determining food web architecture and its seasonal cycles is a precondition for making predictions about Antarctic marine biodiversity under varying climate change scenarios. However, few scientific data concerning Antarctic food web structure, the species playing key roles in web stability and the community responses to changes in sea-ice dynamics are available. Based on C and N stable isotope analysis, we describe Antarctic benthic food webs and the diet of species occurring in shallow waters (Tethys Bay, Ross Sea) before and after seasonal sea-ice break-up. We hypothesized that the increased availability of primary producers (sympagic algae) following sea-ice break-up affects the diet of species and thus food web architecture. Basal resources had distinct isotopic signatures that did not change after sea-ice break-up, enabling a robust description of consumer diets based on Bayesian mixing models. Sympagic algae had the highest δ13C (∼−14‰) and red macroalgae the lowest (∼−37‰). Consumer isotopic niches and signatures changed after sea-ice break-up, reflecting the values of sympagic algae. Differences in food web topology were also observed. The number of taxa and the number of links per taxon were higher before the thaw than after it. After sea-ice break-up, sympagic inputs allowed consumers to specialize on abundant resources at lower trophic levels. Foraging optimization by consumers led to a simpler food web, with lower potential competition and shorter food chains. However, basal resources and Antarctic species such as the bivalve Adamussium colbecki and the sea-urchin Sterechinus neumayeri were central and highly connected both before and after the sea-ice break-up, thus playing key roles in interconnecting species and compartments in the web. Any disturbance affecting these species is expected to have cascading effects on the entire food web. The seasonal break-up of sea ice in Antarctica ensures the availability of resources that are limiting for coastal communities for the rest of the year. Identification of species playing a key role in regulating food web structure in relation to seasonal sea-ice dynamics, which are expected to change with global warming, is central to understanding how these communities will respond to climate change.

2020 ◽  
Vol 237 ◽  
pp. 106299 ◽  
Author(s):  
T. Tesi ◽  
S.T. Belt ◽  
K. Gariboldi ◽  
F. Muschitiello ◽  
L. Smik ◽  
...  

2006 ◽  
Vol 3 (4) ◽  
pp. 777-803
Author(s):  
W. Connolley ◽  
A. Keen ◽  
A. McLaren

Abstract. We present results of an implementation of the Elastic Viscous Plastic (EVP) sea ice dynamics scheme into the Hadley Centre coupled ocean-atmosphere climate model HadCM3. Although the large-scale simulation of sea ice in HadCM3 is quite good with this model, the lack of a full dynamical model leads to errors in the detailed representation of sea ice and limits our confidence in its future predictions. We find that introducing the EVP scheme results in a worse initial simulation of the sea ice. This paper documents various improvements made to improve the simulation, resulting in a sea ice simulation that is better than the original HadCM3 scheme overall. Importantly, it is more physically based and provides a more solid foundation for future improvement. We then consider the interannual variability of the sea ice in the new model and demonstrate improvements over the HadCM3 simulation.


1991 ◽  
Vol 15 ◽  
pp. 9-16 ◽  
Author(s):  
Heinrich Hoeber

Observations of ice drift received from an array of ARGOS buoys drifting in the Weddell Sea in winter 1986 are described. Wind and current data are also available, permitting derivation of the complete momentum budget including the internal ice stress computed as residuum. It is shown that the variability of forcing both of the atmosphere and of the ocean is large, and that internal ice stress is not negligible; monthly vector averages amount to about half of the wind and water stresses. Coefficients of shear and bulk viscosity are derived according to Hibler's model of ice rheology; they turn out to be negative occasionally, in particular when small-scale forcing of the atmosphere is large.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Juan Pablo Corella ◽  
Niccolo Maffezzoli ◽  
Andrea Spolaor ◽  
Paul Vallelonga ◽  
Carlos A. Cuevas ◽  
...  

AbstractIodine has a significant impact on promoting the formation of new ultrafine aerosol particles and accelerating tropospheric ozone loss, thereby affecting radiative forcing and climate. Therefore, understanding the long-term natural evolution of iodine, and its coupling with climate variability, is key to adequately assess its effect on climate on centennial to millennial timescales. Here, using two Greenland ice cores (NEEM and RECAP), we report the Arctic iodine variability during the last 127,000 years. We find the highest and lowest iodine levels recorded during interglacial and glacial periods, respectively, modulated by ocean bioproductivity and sea ice dynamics. Our sub-decadal resolution measurements reveal that high frequency iodine emission variability occurred in pace with Dansgaard/Oeschger events, highlighting the rapid Arctic ocean-ice-atmosphere iodine exchange response to abrupt climate changes. Finally, we discuss if iodine levels during past warmer-than-present climate phases can serve as analogues of future scenarios under an expected ice-free Arctic Ocean. We argue that the combination of natural biogenic ocean iodine release (boosted by ongoing Arctic warming and sea ice retreat) and anthropogenic ozone-induced iodine emissions may lead to a near future scenario with the highest iodine levels of the last 127,000 years.


2012 ◽  
Vol 279 (1741) ◽  
pp. 3291-3297 ◽  
Author(s):  
Russell E. Naisbit ◽  
Rudolf P. Rohr ◽  
Axel G. Rossberg ◽  
Patrik Kehrli ◽  
Louis-Félix Bersier

Food webs are the complex networks of trophic interactions that stoke the metabolic fires of life. To understand what structures these interactions in natural communities, ecologists have developed simple models to capture their main architectural features. However, apparently realistic food webs can be generated by models invoking either predator–prey body-size hierarchies or evolutionary constraints as structuring mechanisms. As a result, this approach has not conclusively revealed which factors are the most important. Here we cut to the heart of this debate by directly comparing the influence of phylogeny and body size on food web architecture. Using data from 13 food webs compiled by direct observation, we confirm the importance of both factors. Nevertheless, phylogeny dominates in most networks. Moreover, path analysis reveals that the size-independent direct effect of phylogeny on trophic structure typically outweighs the indirect effect that could be captured by considering body size alone. Furthermore, the phylogenetic signal is asymmetric: closely related species overlap in their set of consumers far more than in their set of resources. This is at odds with several food web models, which take only the view-point of consumers when assigning interactions. The echo of evolutionary history clearly resonates through current food webs, with implications for our theoretical models and conservation priorities.


2003 ◽  
Vol 20 (7-8) ◽  
pp. 741-757 ◽  
Author(s):  
S. Vavrus ◽  
S. P. Harrison

Sign in / Sign up

Export Citation Format

Share Document