scholarly journals Combining Ecosystem and Single-Species Modeling to Provide Ecosystem-Based Fisheries Management Advice Within Current Management Systems

2021 ◽  
Vol 7 ◽  
Author(s):  
Daniel Howell ◽  
Amy M. Schueller ◽  
Jacob W. Bentley ◽  
Andre Buchheister ◽  
David Chagaris ◽  
...  

Although many countries have formally committed to Ecosystem-Based Fisheries Management (EBFM), actual progress toward these goals has been slow. This paper presents two independent case studies that have combined strategic advice from ecosystem modeling with the tactical advice of single-species assessment models to provide practical ecosystem-based management advice. With this approach, stock status, reference points, and initial target F are computed from a single-species model, then an ecosystem model rescales the target F according to ecosystem indicators without crossing pre-calculated single-species precautionary limits. Finally, the single-species model computes the quota advice from the rescaled target F, termed here Feco. Such a methodology incorporates both the detailed population reconstructions of the single-species model and the broader ecosystem perspective from ecosystem-based modeling, and fits into existing management schemes. The advocated method has arisen from independent work on EBFM in two international fisheries management systems: (1) Atlantic menhaden in the United States and (2) the multi species fisheries of the Irish Sea, in the Celtic Seas ecoregion. In the Atlantic menhaden example, the objective was to develop ecological reference points (ERPs) that account for the effect of menhaden harvest on predator populations and the tradeoffs associated with forage fish management. In the Irish Sea, the objective was to account for ecosystem variability when setting quotas for the individual target species. These two exercises were aimed at different management needs, but both arrived at a process of adjusting the target F used within the current single-species management. Although the approach has limitations, it represents a practical step toward EBFM, which can be adapted to a range of ecosystem objectives and applied within current management systems.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jacob W. Bentley ◽  
Mathieu G. Lundy ◽  
Daniel Howell ◽  
Steven E. Beggs ◽  
Alida Bundy ◽  
...  

Although frequently suggested as a goal for ecosystem-based fisheries management, incorporating ecosystem information into fisheries stock assessments has proven challenging. The uncertainty of input data, coupled with the structural uncertainty of complex multi-species models, currently makes the use of absolute values from such models contentious for short-term single-species fisheries management advice. Here, we propose a different approach where the standard assessment methodologies can be enhanced using ecosystem model derived information. Using a case study of the Irish Sea, we illustrate how stock-specific ecosystem indicators can be used to set an ecosystem-based fishing mortality reference point (FECO) within the “Pretty Good Yield” ranges for fishing mortality which form the present precautionary approach adopted in Europe by the International Council for the Exploration of the Sea (ICES). We propose that this new target, FECO, can be used to scale fishing mortality down when the ecosystem conditions for the stock are poor and up when conditions are good. This approach provides a streamlined quantitative way of incorporating ecosystem information into catch advice and provides an opportunity to operationalize ecosystem models and empirical indicators, while retaining the integrity of current assessment models and the FMSY-based advice process.


2002 ◽  
Vol 59 (9) ◽  
pp. 1429-1440 ◽  
Author(s):  
Jason S Link ◽  
Jon K.T Brodziak ◽  
Steve F Edwards ◽  
William J Overholtz ◽  
David Mountain ◽  
...  

We examined a suite of abiotic, biotic, and human metrics for the northeast U.S. continental shelf ecosystem at the aggregate, community, and system level (>30 different metrics) over three decades. Our primary goals were to describe ecosystem status, to improve understanding of the relationships between key ecosystem processes, and to evaluate potential reference points for ecosystem-based fisheries management (EBFM). To this end, empirical indicators of ecosystem status were examined and standard multivariate statistical methods were applied to describe changes in the system. We found that (i) a suite of metrics is required to accurately characterize ecosystem status and, conversely, that focusing on a few metrics may be misleading; (ii) assessment of ecosystem status is feasible for marine ecosystems; (iii) multivariate points of reference can be determined for EBFM; and (iv) the concept of reference directions could provide an ecosystem level analog to single-species reference points.


2016 ◽  
Vol 74 (2) ◽  
pp. 475-486 ◽  
Author(s):  
Anna Rindorf ◽  
Catherine Mary Dichmont ◽  
Phillip S. Levin ◽  
Pamela Mace ◽  
Sean Pascoe ◽  
...  

Abstract MSY principles for marine fisheries management reflect a focus on obtaining continued high catches to provide food and livelihoods for humanity, while not compromising ecosystems. However, maintaining healthy stocks to provide the maximum sustainable yield on a single-species basis does not ensure that broader ecosystem, economic, and social objectives are addressed. We investigate how the principles of a “pretty good yield” range of fishing mortalities assumed to provide >95% of the average yield for a single stock can be expanded to a pretty good multispecies yield (PGMY) space and further to pretty good multidimensional yield to accommodate situations where the yield from a stock affects the ecosystem, economic and social benefits, or sustainability. We demonstrate in a European example that PGMY is a practical concept. As PGMY provides a safe operating space for management that adheres to the principles of MSY, it allows the consideration of other aspects to be included in operational management advice in both data-rich and data-limited situations. PGMY furthermore provides a way to integrate advice across stocks, avoiding clearly infeasible management combinations, and thereby hopefully increasing confidence in scientific advice.


2008 ◽  
Vol 92 (2-3) ◽  
pp. 231-241 ◽  
Author(s):  
Rainer Froese ◽  
Amanda Stern-Pirlot ◽  
Henning Winker ◽  
Didier Gascuel

2021 ◽  
Vol 8 ◽  
Author(s):  
Jonathan C. P. Reum ◽  
Howard Townsend ◽  
Sarah Gaichas ◽  
Skyler Sagarese ◽  
Isaac C. Kaplan ◽  
...  

As ecosystem-based fisheries management becomes more ingrained into the way fisheries agencies do business, a need for ecosystem and multispecies models arises. Yet ecosystems are complex, and model uncertainty can be large. Model ensembles have historically been used in other disciplines to address model uncertainty. To understand the benefits and limitations of multispecies model ensembles (MMEs), cases where they have been used in the United States to address fisheries management issues are reviewed. The cases include: (1) development of ecological reference points for Atlantic Menhaden, (2) the creation of time series to relate harmful algal blooms to grouper mortality in the Gulf of Mexico, and (3) fostering understanding of the role of forage fish in the California Current. Each case study briefly reviews the management issue, the models used and model synthesis approach taken, and the outcomes and lessons learned from the application of MMEs. Major conclusions drawn from these studies highlight how the act of developing an ensemble model suite can improve the credibility of multispecies models, how qualitative synthesis of projections can advance system understanding and build confidence in the absence of quantitative treatments, and how involving a diverse set of stakeholders early is useful for ensuring the utility of the models and ensemble. Procedures for review and uptake of information from single-species stock assessment models are well established, but the absence of well-defined procedures for MMEs in many fishery management decision-making bodies poses a major obstacle. The benefits and issues identified here should help accelerate the design, implementation, and utility of MMEs in applied fisheries contexts.


2019 ◽  
Vol 76 (4) ◽  
pp. 897-912 ◽  
Author(s):  
Jacob W Bentley ◽  
Natalia Serpetti ◽  
Clive Fox ◽  
Johanna J Heymans ◽  
David G Reid

Abstract Fisher's knowledge offers a valuable source of information to run parallel to observed data and fill gaps in our scientific knowledge. In this study we demonstrate how fishers' knowledge of historical fishing effort was incorporated into an Ecopath with Ecosim (EwE) model of the Irish Sea to fill the significant gap in scientific knowledge prior to 2003. The Irish Sea model was fitted and results compared using fishing effort time-series based on: (i) scientific knowledge, (ii) fishers' knowledge, (iii) adjusted fishers' knowledge, and (iv) a combination of (i) and (iii), termed “hybrid knowledge.” The hybrid model produced the best overall statistical fit, capturing the biomass trends of commercially important stocks. Importantly, the hybrid model also replicated the increase in landings of groups such as “crabs & lobsters” and “epifauna” which were poorly simulated in scenario (i). Incorporating environmental drivers and adjusting vulnerabilities in the foraging arena further improved model fit, therefore the model shows that both fishing and the environment have historically influenced trends in finfish and shellfish stocks in the Irish Sea. The co-production of knowledge approach used here improved the accuracy of model simulations and may prove fundamental for developing ecosystem-based management advice in a global context.


2021 ◽  
pp. 611-650
Author(s):  
Jason S. Link ◽  
Anthony R. Marshak

This chapter presents a cumulative examination of socioeconomic, governance, ecological, and environmental indicators among the eight major United States (U.S.) marine fishery ecosystems, 26 U.S. subregions, and 14 U.S. participatory regional fisheries management organization (RFMO) jurisdictions. Based on these indicators and as one might expect, some regions are making greater progress toward ecosystem-based fisheries management (EBFM) than others, but in all U.S. marine ecosystems there has been notable progress toward EBFM, albeit on different facets for different regions. Common areas of notable progress toward EBFM are observed around the nation in areas of implementing ecosystem-level planning and advancing understanding of ecosystem processes. Overall, it appears that more inherently productive marine ecosystems tend to have greater biomass, fisheries landings, proportional LMR-based employments, and fisheries revenue. More work remains in areas of ecosystem and community resilience, as well as broader consideration of more systematic measures for a fisheries ecosystem (especially ecosystem-level reference points). Several areas of common challenges and anticipated concerns are identified, with an eye toward focusing efforts on addressing these issues.


2007 ◽  
Vol 64 (4) ◽  
pp. 633-639 ◽  
Author(s):  
A. D. M. Smith ◽  
E. J. Fulton ◽  
A. J. Hobday ◽  
D. C. Smith ◽  
P. Shoulder

Abstract Smith, A. D. M., Fulton, E. J., Hobday, A. J., Smith, D. C., and Shoulder, P. 2007. Scientific tools to support the practical implementation of ecosystem-based fisheries management. – ICES Journal of Marine Science, 64: 633–639. Ecosystem-based fisheries management (EBFM) has emerged during the past 5 y as an alternative approach to single-species fishery management. To date, policy development has generally outstripped application and implementation. The EBFM approach has been broadly adopted at a policy level within Australia through a variety of instruments including fisheries legislation, environmental legislation, and a national policy on integrated oceans management. The speed of policy adoption has necessitated equally rapid development of scientific and management tools to support practical implementation. We discuss some of the scientific tools that have been developed to meet this need. These tools include extension of the management strategy evaluation (MSE) approach to evaluate broader ecosystem-based fishery management strategies (using the Atlantis modelling framework), development of new approaches to ecological risk assessment (ERA) for evaluating the ecological impacts of fishing, and development of a harvest strategy framework (HSF) and policy that forms the basis for a broader EBFM strategy. The practical application of these tools (MSE, ERA, and HSF) is illustrated for the southern and eastern fisheries of Australia.


Sign in / Sign up

Export Citation Format

Share Document