scholarly journals Decadal Dynamics of the CO2 System and Associated Ocean Acidification in Coastal Ecosystems of the North East Atlantic Ocean

2021 ◽  
Vol 8 ◽  
Author(s):  
Jean-Philippe Gac ◽  
Pierre Marrec ◽  
Thierry Cariou ◽  
Emilie Grosstefan ◽  
Éric Macé ◽  
...  

Weekly and bi-monthly carbonate system parameters and ancillary data were collected from 2008 to 2020 in three coastal ecosystems of the southern Western English Channel (sWEC) (SOMLIT-pier and SOMLIT-offshore) and Bay of Brest (SOMLIT-Brest) located in the North East Atlantic Ocean. The main drivers of seasonal and interannual partial pressure of CO2 (pCO2) and dissolved inorganic carbon (DIC) variabilities were the net ecosystem production (NEP) and thermodynamics. Differences were observed between stations, with a higher biological influence on pCO2 and DIC in the near-shore ecosystems, driven by both benthic and pelagic communities. The impact of riverine inputs on DIC dynamics was more pronounced at SOMLIT-Brest (7%) than at SOMLIT-pier (3%) and SOMLIT-offshore (<1%). These three ecosystems acted as a weak source of CO2 to the atmosphere of 0.18 ± 0.10, 0.11 ± 0.12, and 0.39 ± 0.08 mol m–2 year–1, respectively. Interannually, air-sea CO2 fluxes (FCO2) variability was low at SOMLIT-offshore and SOMLIT-pier, whereas SOMLIT-Brest occasionally switched to weak annual sinks of atmospheric CO2, driven by enhanced spring NEP compared to annual means. Over the 2008–2018 period, monthly total alkalinity (TA) and DIC anomalies were characterized by significant positive trends (p-values < 0.001), from 0.49 ± 0.20 to 2.21 ± 0.39 μmol kg−1 year−1 for TA, and from 1.93 ± 0.28 to 2.98 ± 0.39 μmol kg–1 year–1 for DIC. These trends were associated with significant increases of calculated seawater pCO2, ranging from +2.95 ± 1.04 to 3.52 ± 0.47 μatm year–1, and strong reductions of calculated pHin situ, with a mean pHin situ decrease of 0.0028 year–1. This ocean acidification (OA) was driven by atmospheric CO2 forcing (57–66%), Sea surface temperature (SST) increase (31–37%), and changes in salinity (2–5%). Additional pHin situ data extended these observed trends to the 2008–2020 period and indicated an acceleration of OA, reflected by a mean pHin situ decrease of 0.0046 year–1 in the sWEC for that period. Further observations over the 1998–2020 period revealed that the climatic indices North Atlantic Oscillation (NAO) and Atlantic Multidecadal Variability (AMV) were linked to trends of SST, with cooling during 1998–2010 and warming during 2010–2020, which might have impacted OA trends at our coastal stations. These results suggested large temporal variability of OA in coastal ecosystems of the sWEC and underlined the necessity to maintain high-resolution and long-term observations of carbonate parameters in coastal ecosystems.

2013 ◽  
Vol 10 (5) ◽  
pp. 8283-8311 ◽  
Author(s):  
M. Wakita ◽  
S. Watanabe ◽  
M. Honda ◽  
A. Nagano ◽  
K. Kimoto ◽  
...  

Abstract. Rising atmospheric CO2 contents have led to greater CO2 uptake by the oceans, lowering both pH due to increasing hydrogen ions and CaCO3 saturation states due to declining carbonate ion (CO32−). Here, we used previously compiled data sets and new data collected in 2010 and 2011 to investigate ocean acidification of the North Pacific western subarctic gyre. In winter, the western subarctic gyre is a source of CO2 to the atmosphere because of convective mixing of deep waters rich in dissolved inorganic carbon (DIC). We calculated pH in winter mixed layer from DIC and total alkalinity (TA), and found that it decreased at the rate of −0.001 ± 0.0004 yr−1 from 1997 to 2011. This decrease rate is slower than that expected under condition of seawater/atmosphere equilibration, and it is also slower than the rate in the subtropical regions (−0.002 yr−1). The slow rate is caused by a reduction of CO2 emission in winter due to an increase in TA. Below the mixed layer, the calcite saturation horizon (~185 m depth) shoaled at the rate of 2.9 ± 0.9 m yr−1 as the result of the declining CO32− concentration (−0.03 ± 0.01 μmol k−1yr−1). Between 200 m and 300 m depth, pH decline during the study period (−0.0051 ± 0.0010 yr−1) was larger than ever reported in the open North Pacific. This enhanced acidification rate below the calcite saturation horizon reflected not only the uptake of anthropogenic CO2 but also the increase in the decomposition of organic matter evaluated from the increase in AOU, which suggests that the dissolution of CaCO3 particles increased.


Marine Policy ◽  
2017 ◽  
Vol 76 ◽  
pp. 159-168 ◽  
Author(s):  
Inma Álvarez-Fernández ◽  
Nuria Fernández ◽  
Noela Sánchez-Carnero ◽  
Juan Freire

2019 ◽  
Vol 11 (9) ◽  
pp. 2677 ◽  
Author(s):  
Miho Ishizu ◽  
Yasumasa Miyazawa ◽  
Tomohiko Tsunoda ◽  
Xinyu Guo

We developed a biogeochemical and carbon model (JCOPE_EC) coupled with an operational ocean model for the North Western Pacific. JCOPE_EC represents ocean acidification indices on the background of the risks due to ocean acidification and our model experiences. It is an off-line tracer model driven by a high-resolution regional ocean general circulation model (JCOPE2M). The results showed that the model adequately reproduced the general patterns in the observed data, including the seasonal variability of chlorophyll-a, dissolved inorganic nitrogen/phosphorus, dissolved inorganic carbon, and total alkalinity. We provide an overview of this system and the results of the model validation based on the available observed data. Sensitivity analysis using fixed values for temperature, salinity, dissolved inorganic carbon and total alkalinity helped us identify which variables contributed most to seasonal variations in the ocean acidification indices, pH and Ωarg. The seasonal variation in the pHinsitu was governed mainly by balances of the change in temperature and dissolved inorganic carbon. The seasonal increase in Ωarg from winter to summer was governed mainly by dissolved inorganic carbon levels.


Sign in / Sign up

Export Citation Format

Share Document