calcite saturation
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 18 (19) ◽  
pp. 5465-5489
Author(s):  
Francisco Díaz-Rosas ◽  
Catharina Alves-de-Souza ◽  
Emilio Alarcón ◽  
Eduardo Menschel ◽  
Humberto E. González ◽  
...  

Abstract. Coccolithophores are potentially affected by ongoing ocean acidification, where rising CO2 lowers seawater pH and calcite saturation state (Ωcal). Southern Patagonian fjords and channels provide natural laboratories for studying these issues due to high variability in physical and chemical conditions. We surveyed coccolithophore assemblages in Patagonian fjords during late spring 2015 and early spring 2017. Surface Ωcal exhibited large variations driven mostly by freshwater inputs. High-Ωcal conditions (max. 3.6) occurred in the Archipelago Madre de Dios. Ωcal ranged from 2.0–2.6 in the western Strait of Magellan and 1.5–2.2 in the inner channel and was subsaturating (0.5) in Skyring Sound. Emiliania huxleyi was the only coccolithophore widely distributed in Patagonian fjords (> 96 % of total coccolithophores), only disappearing in the Skyring Sound, a semi-closed mesohaline system. Correspondence analysis associated higher E. huxleyi biomasses with lower diatom biomasses. The highest E. huxleyi abundances in Patagonia were in the lower range of those reported in Norwegian fjords. Predominant morphotypes were distinct from those previously documented in nearby oceans but similar to those of Norwegian fjords. Moderately calcified forms of E. huxleyi A morphotype were uniformly distributed throughout Patagonia fjords. The exceptional R/hyper-calcified coccoliths, associated with low Ωcal values in Chilean and Peruvian coastal upwellings, were a minor component associated with high Ωcal levels in Patagonia. Outlying mean index (OMI) niche analysis suggested that pH and Ωcal conditions explained most variation in the realized niches of E. huxleyi morphotypes. The moderately calcified A morphotype exhibited the widest niche breadth (generalist), while the R/hyper-calcified morphotype exhibited a more restricted realized niche (specialist). Nevertheless, when considering an expanded sampling domain, including nearby southeast Pacific coastal and offshore waters, even the R/hyper-calcified morphotype exhibited a higher niche breadth than other closely phylogenetically related coccolithophore species. The occurrence of E. huxleyi in naturally low pH–Ωcal environments indicates that its ecological response is plastic and capable of adaptation.


2021 ◽  
Author(s):  
Virgil Dragusin ◽  
Vasile Ersek ◽  
Alvaro Fernandez ◽  
Roxana Ionete ◽  
Andreea Iordache ◽  
...  

<p>Ascunsă cave (Romania) is the subject of a monitoring program since 2012. While the cave air temperature was very stable around 7°C for most of the time, it experienced in 2019 a 3°C rise, and remained high until the present.</p><p>We present here δ<sup>18</sup>O, δ<sup>13</sup>C, and clumped isotope results from calcite farmed at two drip points inside the cave (POM X and POM 2). POM X has a slower drip rate than POM 2 and deposits calcite more continuously. Calcite deposition has been shown to depend on cave air CO<sub>2</sub> concentration, which controls the drip water pH and, further, the calcite saturation index.</p><p>In 2019, δ<sup>18</sup>O values at both sites quickly shifted to lower values as a response to the increase in temperature. At POM X, values were situated between approximately -7.2‰ and -7.6‰ before this transition, whereas in 2019 they shifted to -7.8‰ - -8.0‰. At POM 2, where values were generally lower, they shifted from -7.5‰ to -7.8‰ to -8.0‰.</p><p>Clumped isotope temperature estimates mostly agree, within measurement error, with measured cave temperature. This agreement is notable given that strong offsets are commonly observed in mid-latitude caves, reflecting kinetic fractionation effects. However, intervals with deviations from cave temperature are also observed, suggesting variations in isotopic disequilibrium conditions with time.</p><p>Here we will discuss these isotope changes in relation to cave air temperature and CO<sub>2</sub> concentration, drip water isotope values and elemental chemistry, as well as in relation to drip rates, in order to improve our understanding of calcite precipitation and isotope effects in caves.</p>


2021 ◽  
Author(s):  
Olivier Sulpis ◽  
Priyanka Agrawal ◽  
Mariette Wolthers ◽  
Guy Munhoven ◽  
Matthew Walker ◽  
...  

<p>Aragonite is about 50% more soluble than calcite in seawater and its pelagic production is dominated by pteropods. Moreover, it could account for a large fraction of marine CaCO<sub>3</sub> export. The <em>aragonite compensation depth</em> (ACD, the depth at which accumulation is balanced by dissolution) is generally very close to the <em>aragonite saturation depth</em>, i.e. within a few hundred metres. Conversely, the <em>calcite compensation depth</em> (CCD) can be 1-2 kilometres deeper than the <em>calcite saturation depth</em>. That aragonite disappears shallower than calcite in marine sediments is coherent with aragonite’s greater solubility, but why is the calcite <em>lysocline</em>, i.e. the distance between its compensation and saturation depths, much thicker than its aragonite equivalent?</p><p>Here, we suggest that at the seafloor, the addition of a soluble CaCO<sub>3</sub> phase (aragonite) results in the preservation of a predeposited stable CaCO<sub>3</sub> phase (calcite), and term this a negative priming action. In soil science, priming action refers to the increase in soil organic matter decomposition rate that follows the addition of fresh organic matter, supposedly resulting from a globally increased microbial activity (Bingeman et al., 1953). Using a new 3D model of CaCO<sub>3</sub> dissolution at the grain scale, we show that a conceptually similar phenomenon could occur at the seafloor, in which the dissolution of an aragonite pteropod at the sediment-water interface buffers the porewaters and causes the preservation of surrounding calcite. Since aragonite-producing organisms are particularly vulnerable to ocean acidification, we expect an increasing calcite to aragonite ratio in the CaCO<sub>3</sub> flux reaching the seafloor as we go further in the Anthropocene. This could, in turn, hinder the proposed aragonite negative priming action, and favour chemical erosion of calcite sediments.</p><p> </p><p>Reference: Bingeman, C.W., Varner, J.E., Martin, W.P., 1953. The Effect of the Addition of Organic Materials on the Decomposition of an Organic Soil. Soil Science Society of America Journal 17, 34-38.</p>


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 597
Author(s):  
Hares Khan ◽  
Alo Laas ◽  
Rafael Marcé ◽  
Margot Sepp ◽  
Biel Obrador

Pelagic calcification shapes the carbon budget of lakes and the sensitivity of dissolved inorganic carbon (DIC) responses to lake metabolism. This process, being tightly linked to primary production, needs to be understood within the context of summer eutrophication which is increasing due to human stressors and global change. Most lake carbon budget models do not account for calcification because the conditions necessary for its occurrence are not well constrained. This study aims at identifying ratios between calcification and primary production and the drivers that control these ratios in freshwater. Using in situ incubations in several European freshwater lakes, we identify a strong relationship between calcite saturation and the ratio between calcification and net ecosystem production (NEP) (p-value < 0.001, R2 = 0.95). NEP-induced calcification is a short-term process that is potentiated by the increase in calcite saturation occurring at longer time scales, usually reaching the highest levels in summer. The resulting summer calcification event has effects on the DIC equilibria, causing deviations from the metabolic 1:1 stoichiometry between DIC and dissolved oxygen (DO). The strong dependency of the ratio between NEP and calcification on calcite saturation can be used to develop a suitable parameterization to account for calcification in lake carbon budgets.


2021 ◽  
Author(s):  
Francisco Díaz-Rosas ◽  
Catharina Alves-de-Souza ◽  
Emilio Alarcón ◽  
Eduardo Menschel ◽  
Humberto E. González ◽  
...  

Abstract. Coccolithophores are potentially affected by ongoing ocean acidification, where rising CO2 lowers seawater pH and calcite saturation state (Ωcal). Southern Patagonian fjords and channels provide natural laboratories for studying these issues due to high variability in physical and chemical conditions. We surveyed coccolithophore assemblages in Patagonian fjords during late-spring 2015 and early-spring 2017. Surface Ωcal exhibited large variations driven mostly by freshwater inputs. High Ωcal conditions (max. 3.6) occurred in the Archipelago Madre de Dios. Ωcal ranged from 2.0–2.6 in the western Strait of Magellan, 1.5–2.2 in the Inner Channel, and was sub-saturating (0.5) in Skyring Sound. Emiliania huxleyi was the only coccolithophore widely distributed in Patagonian fjords (> 96 % of total coccolitophores), only disappearing in the Skyring Sound, a semi-closed mesohaline system. Correspondence analysis associated higher E. huxleyi biomasses with lower diatom biomasses. The highest E. huxleyi abundances in Patagonia were in the lower range of those reported in Norwegian fjords. Predominant morphotypes were distinct from those previously documented in nearby oceans but similar to those of Norwegian fjords. Moderate-calcified forms of E. huxleyi A morphotype were uniformly distributed throughout Patagonia fjords. The exceptional R/hyper-calcified coccoliths, associated with low Ωcal values in Chilean and Peruvian coastal upwellings, were a minor component associated with high Ωcal levels in Patagonia. Outlying mean index (OMI) niche analysis suggested that pH/Ωcal conditions explained most variation in the realized niches of E. huxleyi morphotypes. The moderate-calcified A morphotype exhibited the widest niche-breadth (generalist), while the R/hyper-calcified morphotype exhibited a more restricted realized niche (specialist). Nevertheless, when considering an expanded sampling domain, including nearby Southeast Pacific coastal and offshore waters, even the R/hyper-calcified morphotype exhibited a higher niche breadth than other closely phylogenetically-related coccolithophore species. The occurrence of E. huxleyi in naturally low pH/Ωcal environments indicates that its ecological response is plastic and capable of adaptation.


2020 ◽  
Vol 23 (2) ◽  
pp. 203-226
Author(s):  
Diego Zafra-Otero ◽  
Carlos Alberto Ríos-Reyes

The present study integrates geological, mineralogical and geochemical methods in the characterization of the caves: El Nitro and Las Alsacias, from Zapatoca (Colombia). With lithologies dating from the Lower Cretaceous, these cavities reveal a great variety of exokarst geoforms with different types of slips present on the surface, indicating changes in past atmospheric conditions. A great variety of speleothems (endokarstic geoforms) was also found, such as columns, stalactites, stalagmites, among others, which demonstrate a change in calcite saturation in the precipitated water. The morphology of the underground water bodies found showed variations in the dynamics of the karst aquifer (piezometric level and recharge), and it was evidenced that these cavities have structural control. The information obtained in the field (speleothematic catalogs, speleometry, maps, lithostratigraphy and structural data) were validated with atmospheric data and laboratory tests. This research provides new insights into geomorphology (epigeal and hypogeal), hydrogeology and mineralogy; serving as support for future work focused on paleoclimatic reconstruction, tectonic, paleosismic and climate change studies. These cavities represent scientific laboratories of great interest to the academy, since in them phenomena such as global warming and piezometric variations related to atmospheric phenomena can be evidenced.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1227
Author(s):  
Francesco Ulloa-Cedamanos ◽  
Jean-Luc Probst ◽  
Stephane Binet ◽  
Thierry Camboulive ◽  
Virginie Payre-Suc ◽  
...  

The long-term trends and seasonal patterns of stream water chemical composition in a small remote forested karst catchment, were investigated from 1978 to 2018. Calcium, magnesium, and bicarbonates, the dominant ions, increased over the period together with temperature, while sulfates decreased. Carbonate and sulfate mineral dissolution was the main source of these elements. These trends and the seasonal opposite patterns of discharge vs. temperature, calcite saturation index vs. pCO2 and bicarbonate vs. sulfates, suggested the influence of discharge, of reduced long-range atmospheric pollution, and of increasing air temperature on biological activity and carbonate dissolution. Furthermore, the hydrological regime controlled the seasonal stream water chemical composition and fluxes by: (i) a dilution during the high discharge period, (ii) a change in the contribution rate of the waters draining different lithological areas in the catchment, e.g., the increased sulfates to bicarbonates ratio during summer low flows, with a maximum alkalinity decrease of 24%, and (iii) a “piston” and a “flushing” effects of dissolved elements stored in soils and epikarst with the first autumn heavy rains. Long-term stream water hydrochemical surveys of karst system have proved to be powerful indicators of biogeochemical processes, water sources and pathways under variable natural and anthropogenic environmental pressure conditions.


Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 359 ◽  
Author(s):  
Adeline Roche ◽  
Emmanuelle Vennin ◽  
Irina Bundeleva ◽  
Anthony Bouton ◽  
Dahédrey Payandi-Rolland ◽  
...  

The relationship between environmental conditions and the development, mineralization and preservation of modern tufa microbialites was investigated in a 1.1 km long freshwater stream in Villiers-le-Bâcle, a tributary of Mérantaise river. Detailed mapping of the tufa microbialite distribution combined with sedimentological, petrographical and mineralogical analyses were coupled with chemical measurements. Six organosedimentary structures were identified; their distribution appears heterogeneous along the stream and responds to physicochemical conditions of water and specific biological components (e.g., microorganism, exopolymeric substance). Two of the organosedimentary structures show evidence of mineralization and only one is lithified. Based on field observations and in-situ deployment of mineralization markers (bricks), three zones with increasing mineralization intensities are defined, ranging from no mineralization to thick mineralized crusts forming riverine tufa. Both biotic and abiotic processes were proposed for the tufa microbialite formation. We explained changes in mineralization intensities by the specific physicochemical conditions (e.g., calcite saturation index (SIcalc) and partial pressure of CO2 (pCO2) and a closed proximity of the cyanobacterial biofilm and carbonates precipitates. The physical and chemical composition of substrate impact development of microbial communities, mineralization potential of tufa microbialite. Even though the physicochemical and biological conditions were optimal for mineral precipitation, the potential of lithification depended on the presence of a suitable (physical and chemical) substrate.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Andrea Varga ◽  
Gábor Bozsó ◽  
István Garaguly ◽  
Béla Raucsik ◽  
Attila Bencsik ◽  
...  

The study area, Pannonian Basin (Central Europe), is characterized by high heat flow and presence of low-enthalpy geothermal waters. In the Szeged Geothermal Systems (Hungary), having Miocene to Pliocene sandstone aquifers with dominantly Na–HCO3-type thermal water, unwanted carbonate scaling was observed. An integrated approach consisting of host rock and scale mineralogical and petrographic analyses as well as water chemistry led to a better understanding of the characteristic natural (geogenic) environmental conditions of the geothermal aquifers and to highlight their technical importance. Analyses of the reservoir sandstones showed that they are mineralogically immature mixed carbonate-siliciclastic rocks with significant macroporosity. Detrital carbonate grains such as dolomite and limestone fragments appear as important framework components (up to ~20–25%). During water–rock interactions, they could serve as a potential source of the calcium and bicarbonate ions, contributing to the elevated scaling potential. Therefore, this sandstone aquifer cannot be considered as a conventional siliciclastic reservoir. In mudrocks, a significant amount of organic matter also occurs, triggering CO2producing reactions. Correspondingly, framboidal pyrite and ferroan calcite are the main cement minerals in all of the studied sandstone samples which can suggest that calcite saturation state of the thermal fluid is close to equilibrium in oxygen-depleted pore water. Analysis of the dominant carbonate crystals in the scale can suggest that growth of the feather dendrites of low-Mg calcite was probably driven by rapid CO2degassing of CO2-rich thermal water under far-from-equilibrium conditions. Based on hydrogeochemical data and related indices for scaling and corrosion ability, the produced bicarbonate-rich (up to 3180 mg/l) thermal water has a significant potential for carbonate scaling which supports the aforementioned statement. Taking into consideration our present knowledge of geological setting of the studied geothermal systems, temporal changes in chemical composition and temperature of the thermal water during the heating period can indicate upwelling fluids from a deep aquifer. Regarding the pre-Neogene basement, hydrologic contact with a Triassic carbonate aquifer might be reflected in the observed chemical features such as decreased total dissolved solids and increased bicarbonate content with high scale-forming ability. The proposed upflow of basin-derived water could be channeled by Neogene to Quaternary fault zones, including compaction effects creating fault systems above the elevated basement high. The results may help to understand the cause of the high carbonate scale precipitation rates in geothermal systems tapping sandstone aquifers.


Sign in / Sign up

Export Citation Format

Share Document