scholarly journals Biomarkers in Ringed Seals Reveal Recent Onset of Borealization in the High- Compared to the Mid-Latitude Canadian Arctic

2021 ◽  
Vol 8 ◽  
Author(s):  
Camille de la Vega ◽  
Claire Mahaffey ◽  
David J. Yurkowski ◽  
Louisa Norman ◽  
Elysia Simpson ◽  
...  

Warming of the Arctic has resulted in environmental and ecological changes, termed borealization, leading to the northward shift of temperate species. Borealization has occurred across all trophic levels, altering the structure of the food web. The onset and rate of borealization likely varies with latitude, depending on local warming and advection of warmer water into the Arctic. In order to assess latitudinal trends in food web structure in the Arctic, we analyzed stable nitrogen isotopes of specific amino acids alongside bulk stable carbon isotopes in ringed seal muscle tissue from the Canadian Arctic Archipelago (high-Arctic) and Southern Baffin Bay (mid-Arctic) from 1990 to 2016. Our results indicate a shift in food web structure in the high-Arctic that has occurred more recently when compared with the mid-Arctic. Specifically, over the past 25 years, the trophic position of ringed seals from the mid-Arctic was largely constant, whereas the trophic position of ringed seals decreased in the high-Arctic, reaching similar values observed in the mid-Arctic in 2015–2016. This suggests a potential shortening of the food chain length in the high-Arctic, possibly driven by changes in zooplankton communities feeding complexity in association with sea ice decline. This study identifies a temporal offset in the timing of borealization in the Canadian Arctic, resulting in different response of food webs to ecological changes, depending on latitude.

2018 ◽  
Author(s):  
Barbara Oleszczuk ◽  
Katarzyna Grzelak ◽  
Monika Kędra

Arctic marine ecosystems are currently facing sea ice decrease. Changes in the sea ice cover will influence the Organic Matter (OM) fluxes to the bottom and thus benthic communities. We aimed to examine meio- and macrobenthic biodiversity and community structure, and food web, with use of stable isotopes of carbon (δ13C) and nitrogen (δ15N), in relation to depth, sea ice type, and bloom stage. Benthic samples were collected in Svalbard area during spring time in 2015 and 2016 along with samples of particulate and sediment OM. Svalbard fjords, Storfjorden, Barents Sea shelf, continental slope, and Nansen Basin were characterized by different environmental settings including various sea ice conditions, bloom stage, sediment OM and particulate OM in bottom water. The highest biodiversity and biomass were found at the shelf and slope stations where intensive bloom was observed and was related to higher concentrations of fresh, high-quality OM. Low benthic infaunal diversity, abundance, and biomass were noted in fjords and deep stations where quality and quantity of OM was markedly lower. Deposit feeders were the only feeding guild sampled in the deep stations while at other stations 3-4 trophic levels were found.


2014 ◽  
Author(s):  
Eric Hertz ◽  
James Robinson ◽  
Marc Trudel ◽  
Asit Mazumder ◽  
Julia K Baum

In aquatic systems, the ratio of predator mass to prey mass (PPMR) is an important constraint on food web structure, and has been correlated with environmental stability. One common approach of estimating PPMR uses nitrogen stable isotopes (δ15N) as an indicator of trophic position, under the assumption that the discrimination between diet and tissue is constant with increasing diet δ15N (an additive approach). However, recent studies have shown that this assumption may not be valid, and that there is a negative trend between the δ15N of the diet and the discrimination value (a scaled approach). We estimated PPMR for a simulated food web using the traditional additive approach and improved scaled approach, before testing our predictions with isotope samples from a North Sea food web. Our simulations show that the additive approach gives incorrect estimates of PPMR, and these biases are reflected in North Sea PPMR estimates. The extent of the bias is dependent on the baseline δ15N and trophic level sampled, with the greatest differences for samples with low baseline δ15N sampled at lower trophic levels. The scaled approach allows for the comparison of PPMR across varying δ15N baselines and trophic levels, and will refine estimates of PPMR.


2019 ◽  
Vol 76 (11) ◽  
pp. 1929-1939 ◽  
Author(s):  
Kate Prestie ◽  
Iain D. Phillips ◽  
Douglas P. Chivers ◽  
Timothy D. Jardine

Lake food web structure dictates the flow of energy and contaminants to top predators, and addition of invasive species can shift these flows. We examined trophic position (TP), proportional reliance on the littoral zone (Proplittoral), and mercury (Hg) concentrations across the life-span of two predatory fishes, walleye (Sander vitreus) and northern pike (Esox lucius), in lakes with and without invasive virile crayfish (Faxonius virilis). The littoral zone was the dominant foraging zone for both species regardless of size, accounting for 59% and 80% of the diet of walleye and pike, respectively. Both species increased in TP and Hg with body size, as did crayfish. Walleye in crayfish-present lakes had lower Proplittoral, TP, and Hg concentrations compared with non-present lakes, but trophic magnification of Hg through the food web was consistent across all six lakes. These findings underscore a strong role for the littoral zone in channeling energy and contaminants to higher trophic levels and how invasive species can occupy new habitats at low abundance while altering food web structure and contaminant bioaccumulation.


2018 ◽  
Author(s):  
Barbara Oleszczuk ◽  
Katarzyna Grzelak ◽  
Monika Kędra

Arctic marine ecosystems are currently facing sea ice decrease. Changes in the sea ice cover will influence the Organic Matter (OM) fluxes to the bottom and thus benthic communities. We aimed to examine meio- and macrobenthic biodiversity and community structure, and food web, with use of stable isotopes of carbon (δ13C) and nitrogen (δ15N), in relation to depth, sea ice type, and bloom stage. Benthic samples were collected in Svalbard area during spring time in 2015 and 2016 along with samples of particulate and sediment OM. Svalbard fjords, Storfjorden, Barents Sea shelf, continental slope, and Nansen Basin were characterized by different environmental settings including various sea ice conditions, bloom stage, sediment OM and particulate OM in bottom water. The highest biodiversity and biomass were found at the shelf and slope stations where intensive bloom was observed and was related to higher concentrations of fresh, high-quality OM. Low benthic infaunal diversity, abundance, and biomass were noted in fjords and deep stations where quality and quantity of OM was markedly lower. Deposit feeders were the only feeding guild sampled in the deep stations while at other stations 3-4 trophic levels were found.


2014 ◽  
Author(s):  
Eric Hertz ◽  
James Robinson ◽  
Marc Trudel ◽  
Asit Mazumder ◽  
Julia K Baum

In aquatic systems, the ratio of predator mass to prey mass (PPMR) is an important constraint on food web structure, and has been correlated with environmental stability. One common approach of estimating PPMR uses nitrogen stable isotopes (δ15N) as an indicator of trophic position, under the assumption that the discrimination between diet and tissue is constant with increasing diet δ15N (an additive approach). However, recent studies have shown that this assumption may not be valid, and that there is a negative trend between the δ15N of the diet and the discrimination value (a scaled approach). We estimated PPMR for a simulated food web using the traditional additive approach and improved scaled approach, before testing our predictions with isotope samples from a North Sea food web. Our simulations show that the additive approach gives incorrect estimates of PPMR, and these biases are reflected in North Sea PPMR estimates. The extent of the bias is dependent on the baseline δ15N and trophic level sampled, with the greatest differences for samples with low baseline δ15N sampled at lower trophic levels. The scaled approach allows for the comparison of PPMR across varying δ15N baselines and trophic levels, and will refine estimates of PPMR.


2014 ◽  
Vol 48 (22) ◽  
pp. 13246-13252 ◽  
Author(s):  
Birgit M. Braune ◽  
Anthony J. Gaston ◽  
Keith A. Hobson ◽  
H. Grant Gilchrist ◽  
Mark L. Mallory

2020 ◽  
Vol 42 (4) ◽  
pp. 411-424
Author(s):  
Kriste Makareviciute-Fichtner ◽  
Birte Matthiessen ◽  
Heike K Lotze ◽  
Ulrich Sommer

Abstract Many coastal oceans experience not only increased loads of nutrients but also changes in the stoichiometry of nutrient supply. Excess supply of nitrogen and stable or decreased supply of silicon lower silicon to nitrogen (Si:N) ratios, which may decrease diatom proportion in phytoplankton. To examine how Si:N ratios affect plankton community composition and food web structure, we performed a mesocosm experiment where we manipulated Si:N ratios and copepod abundance in a Baltic Sea plankton community. In high Si:N treatments, diatoms dominated. Some of them were likely spared from grazing unexpectedly resulting in higher diatom biomass under high copepod grazing. With declining Si:N ratios, dinoflagellates became more abundant under low and picoplankton under high copepod grazing. This altered plankton food web structure: under high Si:N ratios, edible diatoms were directly accessible food for copepods, while under low Si:N ratios, microzooplankton and phago-mixotrophs (mixoplankton) were a more important food source for mesograzers. The response of copepods to changes in the phytoplankton community was complex and copepod density-dependent. We suggest that declining Si:N ratios favor microzoo- and mixoplankton leading to increased complexity of planktonic food webs. Consequences on higher trophic levels will, however, likely be moderated by edibility, nutritional value or toxicity of dominant phytoplankton species.


2018 ◽  
Author(s):  
Gustavo Yunda-Guarin ◽  
Philippe Archambault ◽  
Guillaume Massé ◽  
Christian Nozais

In polar areas, the pelagic-benthic coupling plays a fundamental role in ensuring organic matter flow across depths and trophic levels. Climate change impacts the Arctic’s physical environment and ecosystem functioning, affecting the sequestration of carbon, the structure and efficiency of the benthic food web and its resilience.In the Arctic Ocean, highest atmospheric warming tendencies (by ~0.5°C) occur in the east of Baffin Bay making this area an ideal site to study the effects of climate change on benthic communities. We sampled epibenthic organisms at 13 stations bordering the sea ice between June and July 2016. The epibenthic taxonomic composition was identified and grouped by feeding guilds. Isotopic signatures (δ13C - δ15N), trophic levels and trophic separation and redundancy were measured and quantified at each station. In the light of the results obtained, the stability of the benthic community in the Baffin Bay at the sea ice edge is discussed.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ashley Ehrman ◽  
Carie Hoover ◽  
Carolina Giraldo ◽  
Shannon A. MacPhee ◽  
Jasmine Brewster ◽  
...  

Abstract Objectives Existing information on Arctic marine food web structure is fragmented. Integrating data across research programs is an important strategy for building a baseline understanding of food web structure and function in many Arctic regions. Naturally-occurring stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) measured directly in the tissues of organisms are a commonly-employed method for estimating food web structure. The objective of the current dataset was to synthesize disparate δ15N, and secondarily δ13C, data in the Canadian Beaufort continental shelf region relevant to trophic and ecological studies at the local and pan-Arctic scales. Data description The dataset presented here contains nitrogen and carbon stable isotope ratios (δ15N, δ13C) measured in marine organisms from the Canadian Beaufort continental shelf region between 1983 and 2013, gathered from 27 published and unpublished sources with associated sampling metadata. A total of 1077 entries were collected, summarizing 8859 individual organisms/samples representing 333 taxa across the Arctic food web, from top marine mammal predators to primary producers.


2006 ◽  
Vol 4 (2) ◽  
pp. 279-284 ◽  
Author(s):  
Alexandre M. Garcia ◽  
David J. Hoeinghaus ◽  
João P. Vieira ◽  
Kirk O. Winemiller ◽  
David M. L. Motta Marques ◽  
...  

Taim Ecological Reserve is located within the Taim Hydrological System and was created to protect a heterogeneous and productive landscape harboring exceptional biological diversity in southern Brazil. Using stable isotope ratio analyses of carbon (delta13C) and nitrogen (delta15N), we provide a preliminary description of the food web structure, including estimates of production sources supporting fish populations and vertical trophic structure, within a representative lake of this system. A total of 21 organisms (5 macrophytes, 3 mollusks and 13 adult fishes) representing 16 species were collected for isotope analysis. Fishes had delta13C values ranging from -24.30º/oo to -28.31º/oo , showing concordance with the range of values observed for macrophytes (-25.49 to -27.10º/oo), and suggesting that these plants could be a major carbon source supporting these fishes. delta13C signatures of Corbicula (-30.81º/oo) and Pomacea (-24.26º/oo) indirectly suggest that phytoplankton and benthic algae could be alternative carbon sources for some consumers. Nitrogen isotope ratios indicated approximately three consumer trophic levels. The pearl cichlid Geophagus brasiliensis was a primary consumer. Two catfishes (Trachelyopterus lucenai and Loricariichthys anus) were secondary consumers. Two congeneric pike cichclids (Crenicichla lepidota and C. punctata), a catfish (Pimelodus maculatus) and the characids Astyanax fasciatus and Oligosarcus robustus were tertiary consumers. Further studies including additional primary producers and consumers and greater sample numbers should be conducted to provide a more complete and detailed description of food web structure and dynamics within the reserve.


Sign in / Sign up

Export Citation Format

Share Document