scholarly journals The Influence of a Suspended Cage Aquaculture Farm on the Hydrodynamic Environment in a Semienclosed Bay, SE China

2022 ◽  
Vol 8 ◽  
Author(s):  
Xintao Jiang ◽  
Junbiao Tu ◽  
Daidu Fan

Hydrodynamic responses of the aquaculture farm structures have been increasingly studied because of their importance in informing the aquaculture carrying capacity and ecological sustainability. The hydrodynamical effect of the suspended cage farm on flow structures and vertical mixing in the Sansha Bay, SE China, is examined using observational data of two comparative stations inside and outside the cage farm. The results show that current velocities are relatively uniform in the vertical except a bottom boundary layer outside the cage farm. Within the cage farm, the surface boundary layer produced by the cage-induced friction is obvious with current velocities decreasing upward, combining the classic bottom boundary layer to form a “double-drag layers” structure in the water column. The cage-induced drag decreases with water depth in the surface boundary layer with a maximum thickness of 3/4 the water column, and the current velocities can be reduced by 54%. The cage-induced friction can also significantly hinder the horizontal water exchange in the farm. Periodic stratification phenomena exist at both stations under the influence of lateral circulation. However, the subsurface (5–10 m below the sea surface) water column below the cage facilities is well-mixed as indicated by the vertical density profile, where the velocity shear (10–3 m–2) is about 10 times higher than that of the subsurface layer outside the cage farm. Therefore, we speculate that the well-mixing of the subsurface water column results from the local turbulence induced by the velocity shear, which in turn is produced by the friction of cage structures.

2020 ◽  
Vol 50 (6) ◽  
pp. 1793-1812 ◽  
Author(s):  
Jacob O. Wenegrat ◽  
Leif N. Thomas

AbstractFlow along isobaths of a sloping lower boundary generates an across-isobath Ekman transport in the bottom boundary layer. When this Ekman transport is down the slope it causes convective mixing—much like a downfront wind in the surface boundary layer—destroying stratification and potential vorticity. In this manuscript we show how this can lead to the development of a forced centrifugal or symmetric instability regime, where the potential vorticity flux generated by friction along the boundary is balanced by submesoscale instabilities that return the boundary layer potential vorticity to zero. This balance provides a strong constraint on the boundary layer evolution, which we use to develop a theory that explains the evolution of the boundary layer thickness, the rate at which the instabilities extract energy from the geostrophic flow field, and the magnitude and vertical structure of the dissipation. Finally, we show using theory and a high-resolution numerical model how the presence of centrifugal or symmetric instabilities alters the time-dependent Ekman adjustment of the boundary layer, delaying Ekman buoyancy arrest and enhancing the total energy removed from the balanced flow field. Submesoscale instabilities of the bottom boundary layer may therefore play an important, largely overlooked, role in the energetics of flow over topography in the ocean.


2016 ◽  
Author(s):  
Julia M. Moriarty ◽  
Courtney K. Harris ◽  
Christophe Rabouille ◽  
Katja Fennel ◽  
Marjorie A. M. Friedrichs ◽  
...  

Abstract. Observations indicate that seabed resuspension of organic material and the associated entrainment of porewater into the overlying water can alter biogeochemical fluxes in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; entrainment of this material into the water column via resuspension and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhone Delta, France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a two-month period that included three resuspension events; also, the supply of organic matter, oxygen and nutrients to the water column was held constant in time. Consistent with time-series observations from the Rhone Delta, model results showed that resuspension increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed allowed seabed oxygen consumption to increase, primarily through nitrification. Resuspension of POM into the water column, and the associated increase in remineralization, also increased oxygen consumption in the bottom boundary layer. During these resuspension events, modeled rates of oxygen consumption increased by up to factors of ~ 2 and ~ 8 in the seabed and bottom boundary layer, respectively. When averaged over two months, the intermittent cycles of erosion and deposition led to a 20 % increase of oxygen consumption in the seabed, as well as a larger increase of ~ 200 % in the bottom boundary layer. These results imply that observations collected during quiescent periods, and biogeochemical models that neglect resuspension or use typical parameterizations for resuspension, may underestimate net oxygen consumption at sites like the Rhone Subaqueous Delta. Local resuspension likely has the most pronounced effect on oxygen dynamics at study sites with a high oxygen concentration in the bottom boundary layer, only a thin seabed oxic layer, and abundant labile organic matter.


2018 ◽  
Vol 861 ◽  
pp. 275-308 ◽  
Author(s):  
Bing-Qing Deng ◽  
Zixuan Yang ◽  
Anqing Xuan ◽  
Lian Shen

Langmuir circulations (LCs) generated by the interaction between wind-driven currents and surface waves can engulf the whole water column in neutrally stratified shallow water and interact with the turbulence in the bottom boundary layer. In this study, we perform a mechanistic study using wall-resolved large-eddy simulations (LES) based on the Craik–Leibovich equations to investigate the effects of LCs on turbulence statistics in the bottom half of shallow water. The highest Reynolds number considered in this paper, $Re_{\unicode[STIX]{x1D70F}}=1000$, is larger than the values considered in wall-resolved LES studies of shallow-water Langmuir turbulence reported in literature. The logarithmic layer is diagnosed based on a plateau region in the profile of a diagnostic function. It is found that the logarithmic layer disrupted at $Re_{\unicode[STIX]{x1D70F}}=395$ reappears at $Re_{\unicode[STIX]{x1D70F}}=1000$, but the von Kármán constant is slightly different from the traditional value $0.41$. To study the effects of LCs on turbulence statistics, LCs are extracted using streamwise averaging. The velocity fluctuations $u_{i}^{\prime }$ are decomposed into a LC-coherent part $u_{i}^{L}$ and a residual turbulence part $u_{i}^{T}$. It is found that the profiles of LC-coherent Reynolds shear stress $-\langle u^{L}v^{L}\rangle$ obtained at various Reynolds numbers are close to each other in the water-column coordinate $y/h$, with $h$ being the half-water depth. As the Reynolds number (or, by definition, the ratio between the outer and inner length scales) increases, the influence of LCs on the near-bottom momentum transfer is reduced, which is responsible for the reappearance of the logarithmic layer. At all of the Reynolds numbers under investigation, the peaks of $\langle u^{L}u^{L}\rangle$ are collocated in the water-column coordinate $y/h$, while those of $\langle u^{T}u^{T}\rangle$ are collocated in the inner-scale coordinate $y/(\unicode[STIX]{x1D708}/u_{\unicode[STIX]{x1D70F}})$. Due to the increase in the distance between the peaks of $\langle u^{L}u^{L}\rangle$ and $\langle u^{T}u^{T}\rangle$ with the Reynolds number, the profile of $\langle u^{\prime }u^{\prime }\rangle$ forms a bimodal shape at $Re_{\unicode[STIX]{x1D70F}}=700$ and $1000$.


Author(s):  
Yagya Dutta Dwivedi ◽  
Vasishta Bhargava Nukala ◽  
Satya Prasad Maddula ◽  
Kiran Nair

Abstract Atmospheric turbulence is an unsteady phenomenon found in nature and plays significance role in predicting natural events and life prediction of structures. In this work, turbulence in surface boundary layer has been studied through empirical methods. Computer simulation of Von Karman, Kaimal methods were evaluated for different surface roughness and for low (1%), medium (10%) and high (50%) turbulence intensities. Instantaneous values of one minute time series for longitudinal turbulent wind at mean wind speed of 12 m/s using both spectra showed strong correlation in validation trends. Influence of integral length scales on turbulence kinetic energy production at different heights is illustrated. Time series for mean wind speed of 12 m/s with surface roughness value of 0.05 m have shown that variance for longitudinal, lateral and vertical velocity components were different and found to be anisotropic. Wind speed power spectral density from Davenport and Simiu profiles have also been calculated at surface roughness of 0.05 m and compared with k−1 and k−3 slopes for Kolmogorov k−5/3 law in inertial sub-range and k−7 in viscous dissipation range. At high frequencies, logarithmic slope of Kolmogorov −5/3rd law agreed well with Davenport, Harris, Simiu and Solari spectra than at low frequencies.


Sign in / Sign up

Export Citation Format

Share Document