scholarly journals Corrigendum: Mercury Accumulation in Marine Sediments—A Comparison of an Upwelling Area and Two Large River Mouths

2021 ◽  
Vol 8 ◽  
Author(s):  
Sara Zaferani ◽  
Harald Biester
Estuaries ◽  
1995 ◽  
Vol 18 (3) ◽  
pp. 509 ◽  
Author(s):  
W. J. Wiseman ◽  
R. W. Garvine

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamed Sanei ◽  
Peter M. Outridge ◽  
Kazumasa Oguri ◽  
Gary A. Stern ◽  
Bo Thamdrup ◽  
...  

AbstractOcean sediments are the largest sink for mercury (Hg) sequestration and hence an important part of the global Hg cycle1. Yet accepted global average Hg flux data for deep-ocean sediments (> 200 m depth) are not based on measurements on sediments but are inferred from sinking particulates2. Mercury fluxes have never been reported from the deepest zone, the hadal (> 6 km depth). Here we report the first measurements of Hg fluxes from two hadal trenches (Atacama and Kermadec) and adjacent abyssal areas (2–6 km). Mercury concentrations of up to 400 ng g−1 were the highest recorded in marine sediments remote from anthropogenic or hydrothermal sources. The two trench systems differed significantly in Hg concentrations and fluxes, but hadal and abyssal areas within each system did not. The relatively low recent mean flux at Kermadec was 6–15 times higher than the inferred deep-ocean average1,3, while the median flux across all cores was 22–56 times higher. Thus, some hadal and abyssal sediments are Hg accumulation hot-spots. The hadal zone comprises only ~ 1% of the deep-ocean area, yet a preliminary estimate based on sediment Hg and particulate organic carbon (POC) fluxes suggests total hadal Hg accumulation may be 12–30% of the estimate for the entire deep-ocean. The few abyssal data show equally high Hg fluxes near trench systems. These results highlight a need for further research into deep-ocean Hg fluxes to better constrain global Hg models.


2003 ◽  
Vol 107 ◽  
pp. 1189-1191
Author(s):  
J. Sarica ◽  
M. Amyot ◽  
J. Bey ◽  
L. Hare
Keyword(s):  

2021 ◽  
Vol 34 (2) ◽  
pp. 04020118
Author(s):  
Song Zhou ◽  
Guan-Lin Ye ◽  
Lei Han ◽  
Wang Jian-Hua

2013 ◽  
Vol 2 (1) ◽  
pp. 91-94 ◽  
Author(s):  
Dawid Surmik ◽  
Tomasz Brachaniec

ABSTRACT An unusual large teeth, finding from time to time in marine sediments of Muschelkalk, Silesia, Poland indicate the superpredators occurrence. According to size and morphological features the teeth are similar to archosaurs or giant marine reptiles.


2020 ◽  
Vol 42 (3) ◽  
pp. 293-303
Author(s):  
VALERIY BONDAREV

The theoretical and methodological basis of the systems hierarchical spatial and temporal analysis of a drainage basin, which addresses the problems of effective management in socio-natural systems of different ranks, is considered. It is proposed to distinguish 9 orders of forms that are relevant to the analysis of drainage basins, where the first level is represented by individual aggregates and particles, and the last - by basins of large and the largest rivers. As part of the allocation of geological, historical and modern time intervals, the specificity of the implementation of processes in basins of different scales from changing states, through functioning to evolution is demonstrated. The interrelation of conditions and factors that determine the processes occurring within the drainage basins is revealed. It is shown that a specific combination of conditions and factors that determine processes in the drainage basin is associated with the hierarchy of the objects under consideration, i.e. the choice of a spatial-temporal hierarchical level is crucial for the organization of study within drainage basins. At one hierarchical level, some phenomenon can be considered as a factor, and at another - as a condition. For example, tectonic processes can be considered as an active factor in the evolution of large river basins in the geological perspective, but for small drainage basin, this is already a conservative background condition. It is shown that at the historical time the anthropogenic factor often comes to the fore, with the appearance of which in the functioning of the drainage basin, there is a need to take into account the entire complex of socio-environmental problems that can affect the sustainable state of various territories, especially in the field of water and land use. Hierarchical levels of managing subjects are identified, which are primarily responsible for effective management at the appropriate hierarchical level of the organization of the socio-natural system within the catchment area, starting from an individual to humankind as a whole.


2011 ◽  
Vol 45 ◽  
pp. 32-49
Author(s):  
R. M. Gogorev ◽  
Z. V. Pushina

The richest diatom complexes have revealed due to the study of glacial-marine sediments sampled in the Fisher Massif (Prince Charles Mountains, East Antarctica) during 52nd and 53rd Russian Antarctic Expeditions (Polar Marine Geol. Survey Expedition) in 2006/07 and 2007/08. Three diatom complexes are distinguished according to different palaeoecological conditions: the planktonic one is located in the basis of the outcrop, while mixed planktonic-benthic and benthic ones being located above. The planktonic diatom complexes are dominated by two oceanic species Actinocyclus ingens (up to 8%) and Denticulopsis simonseni (up to 80%). There are 15 planktonic algae, e. g. Eucampia аntarctica, Fragilariopsis spp., Rhizosolenia spp., Rouxia antarctica, Podosira antarctica sp. nov., Stellarima microtrias; and also unknown and non-described benthic diatoms Achnanthes sp., Cocconeis spp., Rhabdonema (s. l.) spp. and Synedra (s. l.) spp. Detailed data on morphology and taxonomy of 10 centric diatoms are presented, including 3 newly described species.


Sign in / Sign up

Export Citation Format

Share Document