scholarly journals Multiscale Hybridization of Natural Silk–Nanocellulose Fibrous Composites With Exceptional Mechanical Properties

2020 ◽  
Vol 7 ◽  
Author(s):  
Jungju Eom ◽  
Subong Park ◽  
Hyoung-Joon Jin ◽  
Hyo Won Kwak
RSC Advances ◽  
2014 ◽  
Vol 4 (27) ◽  
pp. 14304-14313 ◽  
Author(s):  
Lin Liu ◽  
Xiaogang Yang ◽  
Houyong Yu ◽  
Chao Ma ◽  
Juming Yao

Biomimic silk fibers with refined crystalline structure were produced via incorporating cellulose nanocrystals into silk fibroin matrix to mimic the β-sheet crystallites in natural silk. The fibers exhibit excellent thermal and mechanical properties, attributed to the strong hydrogen bonding interactions between cellulose nanocrystals and silk fibroin as well as cellulose nanocrystal-induced ordered structure.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1578
Author(s):  
Yeon Su Bae ◽  
In Chul Um

In this study, natural silk web and natural silk non-woven fabric were prepared mechanically using the binding character of the sericin in silk. The effect of process variables on the preparation, structure, and properties of the silk web and the non-woven fabric was examined. The reeling velocity affected the morphology and mechanical properties of the web but had almost no influence on the crystalline structure of the silk. From the viewpoint of reel-ability and the mechanical properties (work of rupture) of silk web, a reeling velocity of 39.2 m/min represented the optimal processing velocity. The porosity and swelling ratio of the silk web decreased slightly with increasing reeling velocity. Furthermore, the reeling bath temperature had a significant effect on the reel-ability of silk filaments from a silkworm cocoon. Bath temperatures ≥50 °C yielded good reel-ability (>900 m reeling length). The porosity, swelling ratio in water, and mechanical properties of the silk web and silk non-woven fabric changed only slightly with the reeling bath temperature but changed significantly with the hot press treatment. The hot-pressed silk web (i.e., silk non-woven fabric) exhibited higher tensile strength as well as lower elongation at break, porosity, and swelling ratio than the silk web.


2010 ◽  
Vol 12 (9) ◽  
pp. B529-B538 ◽  
Author(s):  
Jiangang Chen ◽  
Xiaohong Li ◽  
Wenguo Cui ◽  
Chengying Xie ◽  
Jie Zou ◽  
...  

2009 ◽  
Vol 37 (4) ◽  
pp. 677-681 ◽  
Author(s):  
John G. Hardy ◽  
Thomas R. Scheibel

The biocompatibility and biodegradability of natural silk fibres and the benign conditions under which they (with impressive mechanical properties) are produced represent a biomimetic ideal. This ideal has inspired people in both academia and industry to prepare silk-mimetic polymers and proteins by chemical and/or biotechnological means. In the present paper, we aim to give an overview of the design principles of such silk-inspired polymers/proteins, their processing into various materials morphologies, their mechanical and biological properties, and, finally, their technical and biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document