Biomimicking the structure of silk fibers via cellulose nanocrystal as β-sheet crystallite

RSC Advances ◽  
2014 ◽  
Vol 4 (27) ◽  
pp. 14304-14313 ◽  
Author(s):  
Lin Liu ◽  
Xiaogang Yang ◽  
Houyong Yu ◽  
Chao Ma ◽  
Juming Yao

Biomimic silk fibers with refined crystalline structure were produced via incorporating cellulose nanocrystals into silk fibroin matrix to mimic the β-sheet crystallites in natural silk. The fibers exhibit excellent thermal and mechanical properties, attributed to the strong hydrogen bonding interactions between cellulose nanocrystals and silk fibroin as well as cellulose nanocrystal-induced ordered structure.

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 14 ◽  
Author(s):  
Lan Cheng ◽  
Huiming Huang ◽  
Jingyou Zeng ◽  
Zulan Liu ◽  
Xiaoling Tong ◽  
...  

In this study, eight types of materials including nanoparticles (Cu and CaCO3), metallic ions (Ca2+ and Cu2+), and amino acid substances (serine, tyrosine, sericin amino acid, and fibroin amino acid) were used as additives in silkworm diets to obtain in-situ modified silk fiber composites. The results indicate that tyrosine and fibroin amino acids significantly increase potassium content in silk fibers and induce the transformation of α-helices and random coils to β-sheet structures, resulting in higher crystallinities and better mechanical properties. However, the other additives-modified silk fibers show a decrease in β-sheet contents and a slight increase or even decrease in tensile strengths. This finding provides a green and effective approach to produce mechanically enhanced silk fibers with high crystallinity on a large scale. Moreover, the modification mechanisms of these additives were discussed in this study, which could offer new insights into the design and regulation of modified fibers or composites with desirable properties and functions.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1013 ◽  
Author(s):  
Hsuan-Chen Wu ◽  
Aditi Pandey ◽  
Liang-Yu Chang ◽  
Chieh-Yun Hsu ◽  
Thomas Chung-Kuang Yang ◽  
...  

The superlative mechanical properties of spider silk and its conspicuous variations have instigated significant interest over the past few years. However, current attempts to synthetically spin spider silk fibers often yield an inferior physical performance, owing to the improper molecular interactions of silk proteins. Considering this, herein, a post-treatment process to reorganize molecular structures and improve the physical strength of spider silk is reported. The major ampullate dragline silk from Nephila pilipes with a high β-sheet content and an adequate tensile strength was utilized as the study material, while that from Cyrtophora moluccensis was regarded as a reference. Our results indicated that the hydrothermal post-treatment (50–70 °C) of natural spider silk could effectively induce the alternation of secondary structures (random coil to β-sheet) and increase the overall tensile strength of the silk. Such advantageous post-treatment strategy when applied to regenerated spider silk also leads to an increment in the strength by ~2.5–3.0 folds, recapitulating ~90% of the strength of native spider silk. Overall, this study provides a facile and effective post-spinning means for enhancing the molecular structures and mechanical properties of as-spun silk threads, both natural and regenerated.


2017 ◽  
Vol 9 (20) ◽  
pp. 17489-17498 ◽  
Author(s):  
Dihan Su ◽  
Meng Yao ◽  
Jie Liu ◽  
Yiming Zhong ◽  
Xin Chen ◽  
...  

2016 ◽  
Vol 84 ◽  
pp. 173-187 ◽  
Author(s):  
Everton Luiz de Paula ◽  
Frédéric Roig ◽  
André Mas ◽  
Jean-Pierre Habas ◽  
Valdir Mano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document