scholarly journals Electrochromic Device Composed of a Di-Urethanesil Electrolyte Incorporating Lithium Triflate and 1-Butyl-3-Methylimidazolium Chloride

2020 ◽  
Vol 7 ◽  
Author(s):  
Maria Cristina Gonçalves ◽  
Rui F. P. Pereira ◽  
Raquel Alves ◽  
Sílvia C. Nunes ◽  
Mariana Fernandes ◽  
...  
2004 ◽  
Vol 9 (4) ◽  
pp. 363-372 ◽  
Author(s):  
T. Lukaszewicz ◽  
A. Ravinski ◽  
I. Makoed

A new multilayer electrochromic device has been constructed according to the following pattern: glass1/ITO/WO3/gel electrolyte/BP/ITO/glass2, where ITO is a transparent conducting film made of indium and tin oxide and with the surface resistance equal 8–10 Ω/cm2 . The electrochromic devices obtained in the research are characterized by great (considerable) transmittance variation between coloration and bleaching state (25–40% at applied voltage of 1.5 to 3 V), and also high coloration efficiency (above 100 cm2 /C). Selfconsistent energy bands, dielectric permittivity and optical parameters are calculated using a full-potential linear muffin-tin orbital method. The numerical solution of the Debye-Smoluchowski equations is developed for simulating recombination probability of Li+ ions in amorphous electrolyte.


2016 ◽  
Vol 27 (8) ◽  
pp. 7809-7821 ◽  
Author(s):  
N. Usha ◽  
R. Sivakumar ◽  
C. Sanjeeviraja ◽  
R. Balasubramaniam ◽  
Y. Kuroki

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 874
Author(s):  
Soyoung Bae ◽  
Youngno Kim ◽  
Jeong Min Kim ◽  
Jung Hyun Kim

MXene, a 2D material, is used as a filler to manufacture polymer electrolytes with high ionic conductivity because of its unique sheet shape, large specific surface area and high aspect ratio. Because MXene has numerous -OH groups on its surface, it can cause dehydration and condensation reactions with poly(4-styrenesulfonic acid) (PSSA) and consequently create pathways for the conduction of cations. The movement of Grotthuss-type hydrogen ions along the cation-conduction pathway is promoted and a high ionic conductivity can be obtained. In addition, when electrolytes composed of a conventional acid or metal salt alone is applied to an electrochromic device (ECD), it does not bring out fast response time, high coloration efficiency and transmittance contrast simultaneously. Therefore, dual-cation electrolytes are designed for high-performance ECDs. Bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSI) was used as a source of lithium ions and PSSA crosslinked with MXene was used as a source of protons. Dual-Cation electrolytes crosslinked with MXene was applied to an indium tin oxide-free, all-solution-processable ECD. The effect of applying the electrolyte to the device was verified in terms of response time, coloration efficiency and transmittance contrast. The ECD with a size of 5 × 5 cm2 showed a high transmittance contrast of 66.7%, fast response time (8 s/15 s) and high coloration efficiency of 340.6 cm2/C.


ChemNanoMat ◽  
2021 ◽  
Author(s):  
Neha Thakur ◽  
Anjali Chaudhary ◽  
Amrita Chakraborty ◽  
Rajesh Kumar ◽  
Tridib K. Sarma

2015 ◽  
Vol 1107 ◽  
pp. 181-186
Author(s):  
Zaidatul Salwa Mahmud ◽  
N.H.M. Zaki ◽  
R. Zakaria ◽  
Mohamad Faizul Yahya ◽  
Ab Malik Marwan Ali

This paper reports on the conductivity-temperature studies of gel polymer electrolytes (GPEs) based on 49% poly (methyl methacrylate) grafted-natural rubber (MG49) doped with lithium triflate salt (LiTf) and plasticized with ethylene carbonate (EC). The GPE films are prepared by solution cast technique. The X-ray diffraction (XRD) studies reveal the polymer electrolyte systems are amorphous. AC impedance spectroscopy is carried out in the temperature range between 303 and 373 K. The magnitudes of conductivity observed are strongly dependent on salt concentration and temperature. The high ionic conductivity at elevated temperatures of GPE is attributed to the high ionic mobility of charge carriers. The ionic migration is seen to follow the VTF behavior and approaches to Arrhenius rule at high and low at temperature. Ionic conductivity relaxation appears to be a characteristic of the ionic polarization and the modulus formalism studies confirmed the GPEs in the present investigation are ionic conductors.


2004 ◽  
Vol 49 (21) ◽  
pp. 3555-3559 ◽  
Author(s):  
David Mecerreyes ◽  
Rebeca Marcilla ◽  
Estibalitz Ochoteco ◽  
Hans Grande ◽  
Jose A. Pomposo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document