scholarly journals Exploring Dendrimer Nanoparticles for Chronic Wound Healing

2021 ◽  
Vol 3 ◽  
Author(s):  
Samuel Tetteh-Quarshie ◽  
Eric R. Blough ◽  
Cynthia B. Jones

The United States spends billions of dollars to treat chronic wounds each year. Wound healing is complex in nature which involves several intricate multiphase processes that can be delayed for a number of reasons leading to the development of chronic wounds. Wound healing therapies range from topical preparations to surgical repair with treatment options that vary based on other underlying factors like co-infection, age, or co-morbidities such as diabetes. Historically, micelles and liposomes are some of the nanoparticle drug delivery systems explored to treat chronic wounds; however, recent data suggests that dendrimers have shown potential to rival these systems in treating chronic wounds as well as other diseases. This mini review examines advances in dendrimer nanoparticle drug delivery systems to treat chronic wounds.

2021 ◽  
Vol 27 ◽  
Author(s):  
Erfan Rezvani Ghomi ◽  
Mohamadreza Shakiba ◽  
Ali Saedi Ardahaei ◽  
Mahsa Akbari ◽  
Mehdi Faraji ◽  
...  

: Wound healing is a varied and complex process designed to promptly restore standard skin structure, function, and appearance. To achieve this goal, different immune and biological systems participate in coordination through four separate steps, including homeostasis, inflammation, proliferation, and regeneration. Each step involves the function of other cells, cytokines, and growth factors. However, chronic ulcers, which are classified into three types of ulcers, namely vascular ulcers, diabetic ulcers, and pressure ulcers, cannot heal through the mentioned natural stages. It causes mental and physical problems for these people and, as a result, imposes high economic and social costs on society. In this regard, using a system that can accelerate the healing process of such chronic wounds, as an urgent need in the community, should be considered. Therefore, in this study, the innovations of drug delivery systems for the healing of chronic wounds using hydrogels, nanomaterial, and membranes are discussed and reviewed.


2014 ◽  
Vol 3 (2) ◽  
pp. 105-118 ◽  
Author(s):  
Pedro Martins ◽  
Daniela Rosa ◽  
Alexandra Fernandes ◽  
Pedro V. Baptista

2021 ◽  
Vol 18 ◽  
Author(s):  
Hitesh Chopra ◽  
Inderbir Singh ◽  
Sandeep Kumar ◽  
Tanima Bhattacharya ◽  
Md. Habibur Rahman ◽  
...  

: The conventional drug delivery systems have a long list of issues of repeated dosing and toxicity arising due to it. The hydrogels are the answer to them and offer a result that minimizes such activities and optimizes therapeutic benefits. The hydrogels proffer tunable properties that can withstand degradation, metabolism, and controlled release moieties. Some of the areas of applications of hydrogels involve wound healing, ocular systems, vaginal gels, scaffolds for tissue, bone engineering, etc. They consist of about 90% of the water that makes them suitable bio-mimic moiety. Here, we present a birds-eye view of various perspectives of hydrogels, along with their applications.


2015 ◽  
Vol 160 (1) ◽  
pp. 24-35 ◽  
Author(s):  
James D. Fisher ◽  
Abhinav P. Acharya ◽  
Steven R. Little

2020 ◽  
Vol Volume 13 ◽  
pp. 23-36 ◽  
Author(s):  
Nasrul Wathoni ◽  
Agus Rusdin ◽  
Keiichi Motoyama ◽  
I Made Joni ◽  
Ronny Lesmana ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 640 ◽  
Author(s):  
Jihye Yoo ◽  
Changhee Park ◽  
Gawon Yi ◽  
Donghyun Lee ◽  
Heebeom Koo

Targeting nanoparticle (NP) carriers to sites of disease is critical for their successful use as drug delivery systems. Along with optimization of physicochemical properties, researchers have focused on surface modification of NPs with biological ligands. Such ligands can bind specific receptors on the surface of target cells. Furthermore, biological ligands can facilitate uptake of modified NPs, which is referred to as ‘active targeting’ of NPs. In this review, we discuss recent applications of biological ligands including proteins, polysaccharides, aptamers, peptides, and small molecules for NP-mediated drug delivery. We prioritized studies that have demonstrated targeting in animals over in vitro studies. We expect that this review will assist biomedical researchers working with NPs for drug delivery and imaging.


Sign in / Sign up

Export Citation Format

Share Document