scholarly journals How Teichoic Acids Could Support a Periplasm in Gram-Positive Bacteria, and Let Cell Division Cheat Turgor Pressure

2021 ◽  
Vol 12 ◽  
Author(s):  
Harold P. Erickson

The cytoplasm of bacteria is maintained at a higher osmolality than the growth medium, which generates a turgor pressure. The cell membrane (CM) cannot support a large turgor, so there are two possibilities for transferring the pressure to the peptidoglycan cell wall (PGW): (1) the CM could be pressed directly against the PGW, or (2) the CM could be separated from the PGW by a periplasmic space that is isoosmotic with the cytoplasm. There is strong evidence for gram-negative bacteria that a periplasm exists and is isoosmotic with the cytoplasm. No comparable studies have been done for gram-positive bacteria. Here I suggest that a periplasmic space is probably essential in order for the periplasmic proteins to function, including especially the PBPs that remodel the peptidoglycan wall. I then present a semi-quantitative analysis of how teichoic acids could support a periplasm that is isoosmotic with the cytoplasm. The fixed anionic charge density of teichoic acids in the periplasm is ∼0.5 M, which would bring in ∼0.5 M Na+ neutralizing ions. This approximately balances the excess osmolality of the cytoplasm that would produce a turgor pressure of 19 atm. The 0.5 M fixed charge density is similar to that of proteoglycans in articular cartilage, suggesting a comparability ability to support pressure. An isoosmotic periplasm would be especially important for cell division, since it would allow CM constriction and PGW synthesis to avoid turgor pressure.

2003 ◽  
Vol 67 (4) ◽  
pp. 686-723 ◽  
Author(s):  
Francis C. Neuhaus ◽  
James Baddiley

SUMMARY Teichoic acids (TAs) are major wall and membrane components of most gram-positive bacteria. With few exceptions, they are polymers of glycerol-phosphate or ribitol-phosphate to which are attached glycosyl and d-alanyl ester residues. Wall TA is attached to peptidoglycan via a linkage unit, whereas lipoteichoic acid is attached to glycolipid intercalated in the membrane. Together with peptidoglycan, these polymers make up a polyanionic matrix that functions in (i) cation homeostasis; (ii) trafficking of ions, nutrients, proteins, and antibiotics; (iii) regulation of autolysins; and (iv) presentation of envelope proteins. The esterification of TAs with d-alanyl esters provides a means of modulating the net anionic charge, determining the cationic binding capacity, and displaying cations in the wall. This review addresses the structures and functions of d-alanyl-TAs, the d-alanylation system encoded by the dlt operon, and the roles of TAs in cell growth. The importance of dlt in the physiology of many organisms is illustrated by the variety of mutant phenotypes. In addition, advances in our understanding of d-alanyl ester function in virulence and host-mediated responses have been made possible through targeted mutagenesis of dlt. Studies of the mechanism of d-alanylation have identified two potential targets of antibacterial action and provided possible screening reactions for designing novel agents targeted to d-alanyl-TA synthesis.


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


2013 ◽  
Vol 67 (1) ◽  
pp. 313-336 ◽  
Author(s):  
Stephanie Brown ◽  
John P. Santa Maria ◽  
Suzanne Walker

2015 ◽  
Vol 6 (9) ◽  
pp. 5186-5196 ◽  
Author(s):  
Z. Vivian Feng ◽  
Ian L. Gunsolus ◽  
Tian A. Qiu ◽  
Katie R. Hurley ◽  
Lyle H. Nyberg ◽  
...  

Higher cationic charge density on nanoparticles is correlated with higher toxicity to bacteria.


2006 ◽  
Vol 188 (18) ◽  
pp. 6652-6660 ◽  
Author(s):  
Benoît Zuber ◽  
Marisa Haenni ◽  
Tânia Ribeiro ◽  
Kathrin Minnig ◽  
Fátima Lopes ◽  
...  

ABSTRACT High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.


1973 ◽  
Vol 131 (3) ◽  
pp. 619-621 ◽  
Author(s):  
Jiri G. Pavlik ◽  
Howard J. Rogers

Brief heating of Bacillus Licheniformis cell walls at 100°C in aqueous buffers of pH3.0–4.0 removes some polymers but not others from the mucopeptides. For example, relatively undegraded teichuronic acid can be extracted at 100°C in 20min at pH3.0 whereas the teichoic acids are not removed. Similar specificity can be shown with walls from three other species of micro-organism.


Author(s):  
Natal’ya V. Potekhina ◽  
Galina M. Streshinskaya ◽  
Elena M. Tul'skaya ◽  
Alexander S. Shashkov

Sign in / Sign up

Export Citation Format

Share Document