scholarly journals Rhizobial–Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability

2021 ◽  
Vol 12 ◽  
Author(s):  
Ravinder K. Goyal ◽  
Autar K. Mattoo ◽  
Maria Augusta Schmidt

Symbiotic nitrogen fixation (SNF) process makes legume crops self-sufficient in nitrogen (N) in sharp contrast to cereal crops that require an external input by N-fertilizers. Since the latter process in cereal crops results in a huge quantity of greenhouse gas emission, the legume production systems are considered efficient and important for sustainable agriculture and climate preservation. Despite benefits of SNF, and the fact that chemical N-fertilizers cause N-pollution of the ecosystems, the focus on improving SNF efficiency in legumes did not become a breeder’s priority. The size and stability of heritable effects under different environment conditions weigh significantly on any trait useful in breeding strategies. Here we review the challenges and progress made toward decoding the heritable components of SNF, which is considerably more complex than other crop allelic traits since the process involves genetic elements of both the host and the symbiotic rhizobial species. SNF-efficient rhizobial species designed based on the genetics of the host and its symbiotic partner face the test of a unique microbiome for its success and productivity. The progress made thus far in commercial legume crops with relevance to the dynamics of host–rhizobia interaction, environmental impact on rhizobial performance challenges, and what collectively determines the SNF efficiency under field conditions are also reviewed here.

2004 ◽  
Vol 55 (10) ◽  
pp. 1059 ◽  
Author(s):  
A. Anderson ◽  
J. A. Baldock ◽  
S. L. Rogers ◽  
W. Bellotti ◽  
G. Gill

Sulfonylurea residues have been found to inhibit the growth of some legume crops and pastures in seasons following application. Negative effects of these herbicides on symbiotic nitrogen fixation by legume crops and pastures have been demonstrated. Reductions in nitrogen fixation may result from a direct effect of the herbicide on rhizobial growth and/or an indirect effect on plant growth. In this study the influence of chlorsulfuron on the growth of chickpea rhizobia [Mesorhizobium ciceri (CC1192)], the growth of chickpea plants, and the extent of nodulation and nitrogen fixation by the chickpea/rhizobia symbiosis were examined. In vitro studies (in yeast mannitol broth and a defined medium) showed that chlorsulfuron applied at double the recommended field application rate did not influence the growth of chickpea rhizobia. An experiment using 14C-labelled chlorsulfuron was conducted to determine if rhizobial cells exposed to chlorsulfuron could deliver the herbicide to the point of root infection and nodule formation. Approximately 1% of the herbicide present in the rhizobial growth medium remained with the cell/inoculum material after rinsing with 1/4 strength Ringer’s solution. This was considered unlikely to affect chickpea growth, nodulation, or nitrogen fixation. A pot experiment was used to define the influence of chlorsulfuron on the growth, nodulation, and nitrogen fixation of chickpeas. The presence of chlorsulfuron in the soil reduced the nodulation and nitrogen fixation of the chickpea plants. Pre-exposing rhizobia to chlorsulfuron before inoculating them into pots with germinating chickpea seeds, reduced the number of nodules formed by 51%. Exposure of chickpeas and chickpea rhizobia to chlorsulfuron can adversely affect the formation and activity of symbiotic nitrogen-fixing nodules, even when only the rhizobial inoculant is exposed briefly to the herbicide.


2011 ◽  
Vol 11 (5) ◽  
pp. 762-770 ◽  
Author(s):  
Xiaoqi Zhou ◽  
Xian Liu ◽  
Yichao Rui ◽  
Chengrong Chen ◽  
Hanwen Wu ◽  
...  

Author(s):  
Edward C. Cocking ◽  
Shanker L. Kothari ◽  
Caroline A. Batchelor ◽  
Sunita Jain ◽  
Gordon Webster ◽  
...  

2017 ◽  
Vol 109 (5) ◽  
pp. 2223-2230 ◽  
Author(s):  
James A. Heilig ◽  
Evan M. Wright ◽  
James D. Kelly

2020 ◽  
Vol 12 (11) ◽  
pp. 2002-2014
Author(s):  
Ling-Ling Yang ◽  
Zhao Jiang ◽  
Yan Li ◽  
En-Tao Wang ◽  
Xiao-Yang Zhi

Abstract Rhizobia are soil bacteria capable of forming symbiotic nitrogen-fixing nodules associated with leguminous plants. In fast-growing legume-nodulating rhizobia, such as the species in the family Rhizobiaceae, the symbiotic plasmid is the main genetic basis for nitrogen-fixing symbiosis, and is susceptible to horizontal gene transfer. To further understand the symbioses evolution in Rhizobiaceae, we analyzed the pan-genome of this family based on 92 genomes of type/reference strains and reconstructed its phylogeny using a phylogenomics approach. Intriguingly, although the genetic expansion that occurred in chromosomal regions was the main reason for the high proportion of low-frequency flexible gene families in the pan-genome, gene gain events associated with accessory plasmids introduced more genes into the genomes of nitrogen-fixing species. For symbiotic plasmids, although horizontal gene transfer frequently occurred, transfer may be impeded by, such as, the host’s physical isolation and soil conditions, even among phylogenetically close species. During coevolution with leguminous hosts, the plasmid system, including accessory and symbiotic plasmids, may have evolved over a time span, and provided rhizobial species with the ability to adapt to various environmental conditions and helped them achieve nitrogen fixation. These findings provide new insights into the phylogeny of Rhizobiaceae and advance our understanding of the evolution of symbiotic nitrogen fixation.


Sign in / Sign up

Export Citation Format

Share Document