Influence of chlorsulfuron on rhizobial growth, nodule formation, and nitrogen fixation with chickpea

2004 ◽  
Vol 55 (10) ◽  
pp. 1059 ◽  
Author(s):  
A. Anderson ◽  
J. A. Baldock ◽  
S. L. Rogers ◽  
W. Bellotti ◽  
G. Gill

Sulfonylurea residues have been found to inhibit the growth of some legume crops and pastures in seasons following application. Negative effects of these herbicides on symbiotic nitrogen fixation by legume crops and pastures have been demonstrated. Reductions in nitrogen fixation may result from a direct effect of the herbicide on rhizobial growth and/or an indirect effect on plant growth. In this study the influence of chlorsulfuron on the growth of chickpea rhizobia [Mesorhizobium ciceri (CC1192)], the growth of chickpea plants, and the extent of nodulation and nitrogen fixation by the chickpea/rhizobia symbiosis were examined. In vitro studies (in yeast mannitol broth and a defined medium) showed that chlorsulfuron applied at double the recommended field application rate did not influence the growth of chickpea rhizobia. An experiment using 14C-labelled chlorsulfuron was conducted to determine if rhizobial cells exposed to chlorsulfuron could deliver the herbicide to the point of root infection and nodule formation. Approximately 1% of the herbicide present in the rhizobial growth medium remained with the cell/inoculum material after rinsing with 1/4 strength Ringer’s solution. This was considered unlikely to affect chickpea growth, nodulation, or nitrogen fixation. A pot experiment was used to define the influence of chlorsulfuron on the growth, nodulation, and nitrogen fixation of chickpeas. The presence of chlorsulfuron in the soil reduced the nodulation and nitrogen fixation of the chickpea plants. Pre-exposing rhizobia to chlorsulfuron before inoculating them into pots with germinating chickpea seeds, reduced the number of nodules formed by 51%. Exposure of chickpeas and chickpea rhizobia to chlorsulfuron can adversely affect the formation and activity of symbiotic nitrogen-fixing nodules, even when only the rhizobial inoculant is exposed briefly to the herbicide.

2015 ◽  
Vol 112 (49) ◽  
pp. 15232-15237 ◽  
Author(s):  
Beatrix Horváth ◽  
Ágota Domonkos ◽  
Attila Kereszt ◽  
Attila Szűcs ◽  
Edit Ábrahám ◽  
...  

Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.


2019 ◽  
Vol 20 (10) ◽  
pp. 2471 ◽  
Author(s):  
Jie Ji ◽  
Chunyang Zhang ◽  
Zhongfeng Sun ◽  
Longlong Wang ◽  
Deqiang Duanmu ◽  
...  

Cowpea (Vigna unguiculata) is widely cultivated across the world. Due to its symbiotic nitrogen fixation capability and many agronomically important traits, such as tolerance to low rainfall and low fertilization requirements, as well as its high nutrition and health benefits, cowpea is an important legume crop, especially in many semi-arid countries. However, research in Vigna unguiculata is dramatically hampered by the lack of mutant resources and efficient tools for gene inactivation in vivo. In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9). We applied the CRISPR/Cas9-mediated genome editing technology to efficiently disrupt the representative symbiotic nitrogen fixation (SNF) gene in Vigna unguiculata. Our customized guide RNAs (gRNAs) targeting symbiosis receptor-like kinase (SYMRK) achieved ~67% mutagenic efficiency in hairy-root-transformed plants, and nodule formation was completely blocked in the mutants with both alleles disrupted. Various types of mutations were observed near the PAM region of the respective gRNA. These results demonstrate the applicability of the CRISPR/Cas9 system in Vigna unguiculata, and therefore should significantly stimulate functional genomics analyses of many important agronomical traits in this unique crop legume.


1970 ◽  
Vol 50 (5) ◽  
pp. 569-575 ◽  
Author(s):  
H. T. KUNELIUS ◽  
K. W. CLARK

Three birdsfoot trefoil (Lotus corniculatus L.) cultivars, inoculated with one of six Lotus rhizobia strains or dependent on ammonium nitrate, were grown in diSPo growth pouches under controlled environmental conditions at five root temperatures (9–30 C) for 35 days after nodule formation. When the plants were dependent on symbiotic nitrogen fixation, the highest dry weights and nitrogen yields per plant were obtained at 18 or 24 C depending on symbiotic combination. At 9 and 12 C, nitrogen fixation was depressed and the growth was poor. The dry weights of plants at 9 C were 19 to 45% of those at 24 C. At 30 C the growth and nitrogen fixation were generally depressed. At all root temperatures the growth of plants dependent on symbiotic nitrogen fixation was inferior to that of plants receiving combined nitrogen (NH4NO3). Significant interactions indicate that the nitrogen fixing ability of cultivars was dependent on both root temperature and the strain of Lotus rhizobia.


2004 ◽  
Vol 16 (3) ◽  
pp. 137-146 ◽  
Author(s):  
Neera Garg ◽  
Ranju Singla

Four cultivars of chickpea, two of them of Mediterranean origin (kabuli), CSG 9651, BG 267 and two Indian (desi) types, CSG 8962, DCP 92-3, differing in their salt sensitivities were identified after screening ten genotypes in saline soils. The cultivars CSG 9651 and CSG 8962 were salt tolerant while BG 267 and DCP 92-3 were salt sensitive, respectively. The seeds of different cultivars were inoculated with Mesorhizobium ciceri, strain F: 75 and the plants were grown in the greenhouse. After the establishment of symbiosis, 15-day-old seedlings were administered doses of saline at varying concentrations (0, 4, 6, 8 dSm-1 NaCl, Na2SO4, CaCl2). Plants were harvested at 40, 70 and 100 days after sowing, for analyses. The main aim was to compare the relative salt tolerance of both desi and kabuli cultivars in terms of nitrogen fixation and carbon metabolism, as well as to ascertain whether the negative effects of saline stress on nitrogen fixation were due to a limitation of photosynthate supply to the nodule or to a limitation on the nodular metabolism that sustains nitrogenase activity. Plant growth, nodulation and nitrogenase activity was more severely affected in BG 267 and DCP 92-3 under salinity treatments (6 and 8 dSm-1) compared with CSG 9651 and CSG 8962. Nodule number as well as nodule mass increased under salt stress in CSG 9651 and CSG 8962 which might be responsible for their higher nitrogen fixation. Salinity reduced leaf chlorophyll and Rubisco activities in all cultivars. However, tolerant cultivars CSG 9651 and CSG 8962 showed smaller declines than the sensitive ones. Phosphoenolpyruvate carboxylase (PEPCase) activity increased significantly in the nodules of tolerant cultivars under salt stress at all harvests, and this was clearly related to salt concentrations. Our results suggest that in salt-affected soils tolerant cultivars have more efficient nodulation and support higher rates of symbiotic nitrogen fixation than the sensitive cultivars.


2000 ◽  
Vol 113 (4) ◽  
pp. 467-473 ◽  
Author(s):  
Shigeyuki Tajima ◽  
Kenichi Takane ◽  
Mika Nomura ◽  
Hiroshi Kouchi

Author(s):  
Swarup Roy Choudhury ◽  
Sarah M. Johns ◽  
Sona Pandey

Legumes develop root nodules that harbour endosymbiotic bacteria, rhizobia. These rhizobia convert nitrogen to ammonia by biological nitrogen fixation. A thorough understanding of the biological nitrogen fixation in legumes and its regulation is key to develop sustainable agriculture. It is well known that plant hormones affect nodule formation; however, most studies are limited to model legumes due to their suitability for in vitro, plate-based assays. Specifically, it is almost impossible to measure the effects of exogenous hormones or other additives during nodule development in crop legumes such as soybean as they have huge root system in soil. To circumvent this issue, the present research develops suitable media and growth conditions for efficient nodule development under in vitro, soil free conditions in an important legume crop, soybean. Moreover, we also evaluate the effects of all major phytohormones during soybean nodulation under identical conditions. This versatile, inexpensive, scalable and simple protocol provides several advantages over previously established methods. It is extremely time-and resource-efficient, does not require special training or equipment, and produces highly reproducible results. The approach is expandable to other large legumes as well as for other exogenous additives.


2011 ◽  
Vol 11 (5) ◽  
pp. 762-770 ◽  
Author(s):  
Xiaoqi Zhou ◽  
Xian Liu ◽  
Yichao Rui ◽  
Chengrong Chen ◽  
Hanwen Wu ◽  
...  

Author(s):  
Edward C. Cocking ◽  
Shanker L. Kothari ◽  
Caroline A. Batchelor ◽  
Sunita Jain ◽  
Gordon Webster ◽  
...  

Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Terry R. Wright ◽  
Donald Penner

In vitro acetolactate synthase (ALS) activity from three commercial imidazolinone-resistant corn hybrids (ICI 8692 IT, Pioneer 3751 IR, and Ciba 4393 IMR) was compared to imidazolinone-sensitive isogenic hybrid controls for sensitivity to 11 herbicides representing four classes of ALS-inhibiting herbicide chemistry. Acetolactate synthase activity from Pioneer IR and Ciba IMR was cross-resistant to all four classes of ALS inhibitors, ranging from 48- to 5,000-fold. The ICI IT hybrid displayed only four- to eightfold resistance to the six imidazolinone herbicides and the pyrimidinylthiobenzoate herbicide, pyrithiobac, but no cross-resistance to the sulfonylurea and triazolopyrimidine sulfonanilide herbicides. The four- to eightfold enzyme resistance to imidazolinone herbicides provides whole-plant resistance; however, the sevenfold enzyme resistance to pyrithiobac was insufficient to afford whole-plant protection to a field application rate of the herbicide. A second imidazolinone-specific resistance allele,XI-12, currently under commercial development, was examined for the level of dominance at the enzyme level. In the heterozygous state, imazethapyr resistance was fivefold, compared to 250-fold in the homozygous condition, indicatingXI-12is a semidominant trait. No cross-resistance to nicosulfuron or primisulfuron was observed in the heterozygousXI-12hybrid extracts nor to nicosulfuron in theXI-12homozygote; however, a fivefold resistance to primisulfuron was detected in theXI-12homozygote.


Sign in / Sign up

Export Citation Format

Share Document