scholarly journals Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae

2021 ◽  
Vol 12 ◽  
Author(s):  
Sheeba Santhini Manoharan-Basil ◽  
Jolein Gyonne Elise Laumen ◽  
Christophe Van Dijck ◽  
Tessa De Block ◽  
Irith De Baetselier ◽  
...  

Horizontal gene transfer (HGT) in the penA and multidrug efflux pump genes has been shown to play a key role in the genesis of antimicrobial resistance in Neisseria gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes coding for the ribosomal proteins in the Neisseria genus. We did this in a collection of 11,659 isolates of Neisseria, including N. gonorrhoeae and commensal Neisseria species (N. cinerea, N. elongata, N. flavescens, N. mucosa, N. polysaccharea, and N. subflava). Comparative genomic analyses identified HGT events in three genes: rplB, rplD, and rplY coding for ribosomal proteins L2, L4 and L25, respectively. Recombination events were predicted in N. gonorrhoeae and N. cinerea, N. subflava, and N. lactamica were identified as likely progenitors. In total, 2,337, 2,355, and 1,127 isolates possessed L2, L4, and L25 HGT events. Strong associations were found between HGT in L2/L4 and the C2597T 23S rRNA mutation that confers reduced susceptibility to macrolides. Whilst previous studies have found evidence of HGT of entire genes coding for ribosomal proteins in other bacterial species, this is the first study to find evidence of HGT-mediated chimerization of ribosomal proteins.


Author(s):  
J G E Laumen ◽  
S S Manoharan-Basil ◽  
E Verhoeven ◽  
S Abdellati ◽  
I De Baetselier ◽  
...  

Abstract Background The prevalence of azithromycin resistance in Neisseria gonorrhoeae is increasing in numerous populations worldwide. Objectives To characterize the genetic pathways leading to high-level azithromycin resistance. Methods A customized morbidostat was used to subject two N. gonorrhoeae reference strains (WHO-F and WHO-X) to dynamically sustained azithromycin pressure. We tracked stepwise evolution of resistance by whole genome sequencing. Results Within 26 days, all cultures evolved high-level azithromycin resistance. Typically, the first step towards resistance was found in transitory mutations in genes rplD, rplV and rpmH (encoding the ribosomal proteins L4, L22 and L34 respectively), followed by mutations in the MtrCDE-encoded efflux pump and the 23S rRNA gene. Low- to high-level resistance was associated with mutations in the ribosomal proteins and MtrCDE efflux pump. However, high-level resistance was consistently associated with mutations in the 23S ribosomal RNA, mainly the well-known A2059G and C2611T mutations, but also at position A2058G. Conclusions This study enabled us to track previously reported mutations and identify novel mutations in ribosomal proteins (L4, L22 and L34) that may play a role in the genesis of azithromycin resistance in N. gonorrhoeae.



mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Peter Jorth ◽  
Marvin Whiteley

ABSTRACTNatural transformation by competent bacteria is a primary means of horizontal gene transfer; however, evidence that competence drives bacterial diversity and evolution has remained elusive. To test this theory, we used a retrospective comparative genomic approach to analyze the evolutionary history ofAggregatibacter actinomycetemcomitans, a bacterial species with both competent and noncompetent sister strains. Through comparative genomic analyses, we reveal that competence is evolutionarily linked to genomic diversity and speciation. Competence loss occurs frequently during evolution and is followed by the loss of clustered regularly interspaced short palindromic repeats (CRISPRs), bacterial adaptive immune systems that protect against parasitic DNA. Relative to noncompetent strains, competent bacteria have larger genomes containing multiple rearrangements. In contrast, noncompetent bacterial genomes are extremely stable but paradoxically susceptible to infective DNA elements, which contribute to noncompetent strain genetic diversity. Moreover, incomplete noncompetent strain CRISPR immune systems are enriched for self-targeting elements, which suggests that the CRISPRs have been co-opted for bacterial gene regulation, similar to eukaryotic microRNAs derived from the antiviral RNA interference pathway.IMPORTANCEThe human microbiome is rich with thousands of diverse bacterial species. One mechanism driving this diversity is horizontal gene transfer by natural transformation, whereby naturally competent bacteria take up environmental DNA and incorporate new genes into their genomes. Competence is theorized to accelerate evolution; however, attempts to test this theory have proved difficult. Through genetic analyses of the human periodontal pathogenAggregatibacter actinomycetemcomitans, we have discovered an evolutionary connection between competence systems promoting gene acquisition and CRISPRs (clustered regularly interspaced short palindromic repeats), adaptive immune systems that protect bacteria against genetic parasites. We show that competentA. actinomycetemcomitansstrains have numerous redundant CRISPR immune systems, while noncompetent bacteria have lost their CRISPR immune systems because of inactivating mutations. Together, the evolutionary data linking the evolution of competence and CRISPRs reveals unique mechanisms promoting genetic heterogeneity and the rise of new bacterial species, providing insight into complex mechanisms underlying bacterial diversity in the human body.



mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Meinan Lyu ◽  
Mitchell A. Moseng ◽  
Jennifer L. Reimche ◽  
Concerta L. Holley ◽  
Vijaya Dhulipala ◽  
...  

ABSTRACT Neisseria gonorrhoeae is an obligate human pathogen and causative agent of the sexually transmitted infection (STI) gonorrhea. The most predominant and clinically important multidrug efflux system in N. gonorrhoeae is the multiple transferrable resistance (Mtr) pump, which mediates resistance to a number of different classes of structurally diverse antimicrobial agents, including clinically used antibiotics (e.g., β-lactams and macrolides), dyes, detergents and host-derived antimicrobials (e.g., cationic antimicrobial peptides and bile salts). Recently, it has been found that gonococci bearing mosaic-like sequences within the mtrD gene can result in amino acid changes that increase the MtrD multidrug efflux pump activity, probably by influencing antimicrobial recognition and/or extrusion to elevate the level of antibiotic resistance. Here, we report drug-bound solution structures of the MtrD multidrug efflux pump carrying a mosaic-like sequence using single-particle cryo-electron microscopy, with the antibiotics bound deeply inside the periplasmic domain of the pump. Through this structural approach coupled with genetic studies, we identify critical amino acids that are important for drug resistance and propose a mechanism for proton translocation. IMPORTANCE Neisseria gonorrhoeae has become a highly antimicrobial-resistant Gram-negative pathogen. Multidrug efflux is a major mechanism that N. gonorrhoeae uses to counteract the action of multiple classes of antibiotics. It appears that gonococci bearing mosaic-like sequences within the gene mtrD, encoding the most predominant and clinically important transporter of any gonococcal multidrug efflux pump, significantly elevate drug resistance and enhance transport function. Here, we report cryo-electron microscopy (EM) structures of N. gonorrhoeae MtrD carrying a mosaic-like sequence that allow us to understand the mechanism of drug recognition. Our work will ultimately inform structure-guided drug design for inhibiting these critical multidrug efflux pumps.



2008 ◽  
Vol 191 (1) ◽  
pp. 287-297 ◽  
Author(s):  
Jason P. Folster ◽  
Paul J. T. Johnson ◽  
Lydgia Jackson ◽  
Vijaya Dhulipali ◽  
David W. Dyer ◽  
...  

ABSTRACT The MtrR transcriptional-regulatory protein is known to repress transcription of the mtrCDE operon, which encodes a multidrug efflux pump possessed by Neisseria gonorrhoeae that is important in the ability of gonococci to resist certain hydrophobic antibiotics, detergents, dyes, and host-derived antimicrobials. In order to determine whether MtrR can exert regulatory action on other gonococcal genes, we performed a whole-genome microarray analysis using total RNA extracted from actively growing broth cultures of isogenic MtrR-positive and MtrR-negative gonococci. We determined that, at a minimum, 69 genes are directly or indirectly subject to MtrR control, with 47 being MtrR repressed and 22 being MtrR activated. rpoH, which encodes the general stress response sigma factor RpoH (sigma 32), was found by DNA-binding studies to be directly repressed by MtrR, as it was found to bind to a DNA sequence upstream of rpoH that included sites within the rpoH promoter. MtrR also repressed the expression of certain RpoH-regulated genes, but this regulation was likely indirect and a reflection of MtrR control of rpoH expression. Inducible expression of MtrR was found to repress rpoH expression and to increase gonococcal susceptibility to hydrogen peroxide (H2O2) and an antibiotic (erythromycin) recognized by the MtrC-MtrD-MtrE efflux pump system. We propose that, apart from its ability to control the expression of the mtrCDE-encoded efflux pump operon and, as a consequence, levels of gonococcal resistance to host antimicrobials (e.g., antimicrobial peptides) recognized by the efflux pump, the ability of MtrR to regulate the expression levels of rpoH and RpoH-regulated genes also modulates levels of gonococcal susceptibility to H2O2.



2021 ◽  
Vol 11 ◽  
Author(s):  
Hui Li ◽  
Yingyu Wang ◽  
Qiyan Chen ◽  
Xi Xia ◽  
Jianzhong Shen ◽  
...  

The emergence and worldwide dissemination of plasmid-mediated colistin resistance gene mcr-1 has attracted global attention. The MCR-1 enzyme mediated colistin resistance by catalyzing phosphoethanolamine (PEA) transfer onto bacterial lipid A. However, the interaction partners of MCR-1 located in membrane protein in E. coli are unknown. Co-immunoprecipitation (Co-IP) and Mass Spectrometry were performed to define the interacting proteins of MCR-1. A total of three different anti-MCR-1 monoclonal antibody (mAbs) were prepared and 3G4 mAb was selected as the bait protein by compared their suitability for Co-IP. We identified 53, 13, and 14 interacting proteins in E. coli BL21 (DE3) (pET28a-mcr-1), E. coli BL21 (DE3) (pET28a-mcr-1-200), and E. coli DH5α (pUC19-mcr-1), respectively. Six proteins, including the stress response proteins DnaK (chaperone protein) and SspB (stringent starvation protein B), the transcriptional regulation protein H-NS, and ribosomal proteins (RpsE, RpsJ, and RpsP) were identified in all these three strains. These MCR-1-interacting proteins were mainly involved in ribosome and RNA degradation, suggesting that MCR-1 influences the protein biosynthesis through the interaction with ribosomal protein. Multidrug efflux pump AcrA and TolC were important interacting membrane proteins of MCR-1 referred to drug efflux during the PEA modification of the bacterial cell membrane. Overall, we firstly identified the functional interactome profile of MCR-1 in E. coli and discovered that two-component AcrA-TolC multidrug efflux pump was involved in mcr-1-mediated colistin resistance.



2020 ◽  
Author(s):  
J.G.E. Laumen ◽  
S.S. Manoharan-Basil ◽  
E Verhoeven ◽  
S Abdellati ◽  
I De Baetselier ◽  
...  

AbstractObjectivesThe prevalence of azithromycin resistance in Neisseria gonorrhoeae is increasing in numerous populations worldwide. The aim of this study was to characterize the genetic pathways leading to high-level azithromycin resistance.MethodsA customized morbidostat was used to subject two N. gonorrhoeae reference strains (WHO-F and WHO-X) to dynamically sustained azithromycin pressure. We tracked stepwise evolution of resistance by whole genome sequencing.ResultsWithin 26 days, all cultures evolved high-level azithromycin resistance. Typically, the first step towards resistance was found in transitory mutations in genes rplD, rplV and rpmH (encoding the ribosomal proteins L4, L22 and L34 respectively), followed by mutations in the MtrCDE-encoded efflux pump and the 23S rRNA gene. Low-to high-level resistance was associated with mutations in the ribosomal proteins and MtrCDE-encoded efflux pump. However, high-level resistance was consistently associated with mutations in the 23S ribosomal RNA - mainly the well-known A2059G and C2611T mutations, but also at position A2058G.ConclusionsThis study enabled us to track previously reported mutations and identify novel mutations in ribosomal proteins (L4, L22 and L34) that may play a role in the genesis of azithromycin resistance in N. gonorrhoeae.



2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Grace A. Beggs ◽  
Yaramah M. Zalucki ◽  
Nicholas Gene Brown ◽  
Sheila Rastegari ◽  
Rebecca K. Phillips ◽  
...  

ABSTRACT Neisseria gonorrhoeae responds to host-derived antimicrobials by inducing the expression of the mtrCDE-encoded multidrug efflux pump, which expels microbicides, such as bile salts, fatty acids, and multiple extrinsically administered drugs, from the cell. In the absence of these cytotoxins, the TetR family member MtrR represses the mtrCDE genes. Although antimicrobial-dependent derepression of mtrCDE is clear, the physiological inducers of MtrR are unknown. Here, we report the crystal structure of an induced form of MtrR. In the binding pocket of MtrR, we observed electron density that we hypothesized was N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), a component of the crystallization reagent. Using the MtrR-CAPS structure as an inducer-bound template, we hypothesized that bile salts, which bear significant chemical resemblance to CAPS, are physiologically relevant inducers. Indeed, characterization of MtrR-chenodeoxycholate and MtrR-taurodeoxycholate interactions, both in vitro and in vivo, revealed that these bile salts, but not glyocholate or taurocholate, bind MtrR tightly and can act as bona fide inducers. Furthermore, two residues, W136 and R176, were shown to be important in binding chenodeoxycholate but not taurodeoxycholate, suggesting different binding modes of the bile salts. These data provide insight into a crucial mechanism utilized by the pathogen to overcome innate human defenses. IMPORTANCE Neisseria gonorrhoeae causes a significant disease burden worldwide, and a meteoric rise in its multidrug resistance has reduced the efficacy of antibiotics previously or currently approved for therapy of gonorrheal infections. The multidrug efflux pump MtrCDE transports multiple drugs and host-derived antimicrobials from the bacterial cell and confers survival advantage on the pathogen within the host. Transcription of the pump is repressed by MtrR but relieved by the cytosolic influx of antimicrobials. Here, we describe the structure of induced MtrR and use this structure to identify bile salts as physiological inducers of MtrR. These findings provide a mechanistic basis for antimicrobial sensing and gonococcal protection by MtrR through the derepression of mtrCDE expression after exposure to intrinsic and clinically applied antimicrobials.



mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
William M. Shafer ◽  
Elizabeth A. Ohneck

ABSTRACTWhile horizontal gene transfer occurs frequently among bacterial species, evidence for the transfer of DNA from host to microbe is exceptionally rare. However, the recent report by Anderson and Seifert [mBio 2(1):e00005-11, 2011] provides evidence for such an event with the finding that 11% ofNeisseria gonorrhoeaestrains harbor a 685-bp sequence that is 98 to 100% identical to the human long interspersed nuclear element L1. While the function of this element in gonococci remains unclear, this finding significantly impacts our consideration of the coevolution of hosts and microbes, particularly that of humans and pathogens.



PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e97903 ◽  
Author(s):  
Jani Reddy Bolla ◽  
Chih-Chia Su ◽  
Sylvia V. Do ◽  
Abhijith Radhakrishnan ◽  
Nitin Kumar ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document