scholarly journals Moniliophthora perniciosa, the Causal Agent of Cacao Witches’ Broom Disease Is Killed in vitro by Saccharomyces cerevisiae and Wickerhamomyces anomalus Yeasts

2021 ◽  
Vol 12 ◽  
Author(s):  
Pedro Ferraz ◽  
Rogelio Lopes Brandão ◽  
Fernanda Cássio ◽  
Cândida Lucas

Cacao plantations from South America have been afflicted with the severe fungal disease known as Witches’ Broom Disease (WBD), caused by the basidiomycete Moniliophthora perniciosa. Yeasts are increasingly recognized as good fungal biocides, although their application is still mostly restricted to the postharvest control of plant and fruit decay. Their possible utilization in the field, in a preharvest phase, is nevertheless promising, particularly if the strains are locally adapted and evolved and if they belong to species considered safe for man and the environment. In this work, a group of yeast strains originating from sugarcane-based fermentative processes in Brazil, the cacao-producing country where the disease is most severe, were tested for their ability to antagonize M. perniciosa in vitro. Wickerhamomyces anomalus LBCM1105 and Saccharomyces cerevisiae strains LBCM1112 from spontaneous fermentations used to produce cachaça, and PE2 widely used in Brazil in the industrial production of bioethanol, efficiently antagonized six strains of M. perniciosa, originating from several South American countries. The two fastest growing fungal strains, both originating from Brazil, were further used to assess the mechanisms underlying the yeasts’ antagonism. Yeasts were able to inhibit fungal growth and kill the fungus at three different temperatures, under starvation, at different culture stages, or using an inoculum from old yeast cultures. Moreover, SEM analysis revealed that W. anomalus and S. cerevisiae PE2 cluster and adhere to the hyphae, push their surface, and fuse to them, ultimately draining the cells. This behavior concurs with that classified as necrotrophic parasitism/mycoparasitism. In particular, W. anomalus within the adhered clusters appear to be ligated to each other through roundish groups of fimbriae-like structures filled with bundles of microtubule-sized formations, which appear to close after cells detach, leaving a scar. SEM also revealed the formation of tube-like structures apparently connecting yeast to hypha. This evidence suggests W. anomalus cells form a network of yeast cells connecting with each other and with hyphae, supporting a possible cooperative collective killing and feeding strategy. The present results provide an initial step toward the formulation of a new eco-friendly and effective alternative for controlling cacao WBD using live yeast biocides.

2006 ◽  
Vol 6 (2) ◽  
pp. 328-336 ◽  
Author(s):  
Kariona A. Grabińska ◽  
Paula Magnelli ◽  
Phillips W. Robbins

ABSTRACT Chs4p (Cal2/Csd4/Skt5) was identified as a protein factor physically interacting with Chs3p, the catalytic subunit of chitin synthase III (CSIII), and is indispensable for its enzymatic activity in vivo. Chs4p contains a putative farnesyl attachment site at the C-terminal end (CVIM motif) conserved in Chs4p of Saccharomyces cerevisiae and other fungi. Several previous reports questioned the role of Chs4p prenylation in chitin biosynthesis. In this study we reinvestigated the function of Chs4p prenylation. We provide evidence that Chs4p is farnesylated by showing that purified Chs4p is recognized by anti-farnesyl antibody and is a substrate for farnesyl transferase (FTase) in vitro and that inactivation of FTase increases the amount of unmodified Chs4p in yeast cells. We demonstrate that abolition of Chs4p prenylation causes a ∼60% decrease in CSIII activity, which is correlated with a ∼30% decrease in chitin content and with increased resistance to the chitin binding compound calcofluor white. Furthermore, we show that lack of Chs4p prenylation decreases the average chain length of the chitin polymer. Prenylation of Chs4p, however, is not a factor that mediates plasma membrane association of the protein. Our results provide evidence that the prenyl moiety attached to Chs4p is a factor modulating the activity of CSIII both in vivo and in vitro.


1986 ◽  
Vol 6 (7) ◽  
pp. 2382-2391
Author(s):  
C A Kaiser ◽  
D Botstein

Nine mutations in the signal sequence region of the gene specifying the secreted Saccharomyces cerevisiae enzyme invertase were constructed in vitro. The consequences of these mutations were studied after returning the mutated genes to yeast cells. Short deletions and two extensive substitution mutations allowed normal expression and secretion of invertase. Other substitution mutations and longer deletions blocked the formation of extracellular invertase. Yeast cells carrying this second class of mutant gene expressed novel active internal forms of invertase that exhibited the following properties. The new internal proteins had the mobilities in denaturing gels expected of invertase polypeptides that had retained a defective signal sequence and were otherwise unmodified. The large increase in molecular weight characteristic of glycosylation was not seen. On nondenaturing gels the mutant enzymes were found as heterodimers with a normal form of invertase that is known to be cytoplasmic, showing that the mutant forms of the enzyme are assembled in the same compartment as the cytoplasmic enzyme. All of the mutant enzymes were soluble and not associated with the membrane components after fractionation of crude cell extracts on sucrose gradients. Therefore, these signal sequence mutations result in the production of active internal invertase that has lost the ability to enter the secretory pathway. This demonstrates that the signal sequence is required for the earliest steps in membrane translocation.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1990 ◽  
Vol 10 (11) ◽  
pp. 5679-5687
Author(s):  
C K Barlowe ◽  
D R Appling

In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.


1992 ◽  
Vol 12 (9) ◽  
pp. 4215-4229
Author(s):  
S Heidmann ◽  
B Obermaier ◽  
K Vogel ◽  
H Domdey

In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.


1985 ◽  
Vol 5 (4) ◽  
pp. 816-822
Author(s):  
H J Himmelfarb ◽  
E Maicas ◽  
J D Friesen

The Saccharomyces cerevisiae SUP45+ gene has been isolated from a genomic clone library by genetic complementation of paromomycin sensitivity, which is a property of a mutant strain carrying the sup45-2 allele. This plasmid complements all phenotypes associated with the sup45-2 mutation, including nonsense suppression, temperature sensitivity, osmotic sensitivity, and paromomycin sensitivity. Genetic mapping with a URA3+-marked derivative of the complementing plasmid that was integrated into the chromosome by homologous recombination demonstrated that the complementing fragment contained the SUP45+ gene and not an unlinked suppressor. The SUP45+ gene is present as a single copy in the haploid genome and is essential for viability. In vitro translation of the hybrid-selected SUP45+ transcript yielded a protein of Mr = 54,000, which is larger than any known ribosomal protein. RNA blot hybridization analysis showed that the steady-state level of the SUP45+ transcript is less than 10% of that for ribosomal protein L3 or rp59 transcripts. When yeast cells are subjected to a mild heat shock, the synthesis rate of the SUP45+ transcript was transiently reduced, approximately in parallel with ribosomal protein transcripts. Our data suggest that the SUP45+ gene does not encode a ribosomal protein. We speculate that it codes for a translation-related function whose precise nature is not yet known.


1993 ◽  
Vol 13 (12) ◽  
pp. 7836-7849
Author(s):  
P Russo ◽  
W Z Li ◽  
Z Guo ◽  
F Sherman

The cyc1-512 mutant was previously shown to contain a 38-bp deletion, 8 nucleotides upstream from the major wild-type poly(A) site, in the CYC1 gene, which encodes iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. This 38-bp deletion caused a 90% reduction in the CYC1 transcripts, which were heterogeneous in size, aberrantly long, and presumably labile (K. S. Zaret and F. Sherman, Cell 28:563-573, 1982). Site-directed mutagenesis in and adjacent to the 38-bp region was used to identify signals involved in the formation and positioning of CYC1 mRNA 3' ends. In addition, combinations of various putative 3' end-forming signals were introduced by in vitro mutagenesis into the 3' region of the cyc1-512 mutant. The combined results from both studies suggest that 3' end formation in yeast cells involves signals having the following three distinct but integrated elements acting in concert: (i) the upstream element, including sequences TATATA, TAG ... TATGTA, and TTTTTATA, which function by enhancing the efficiency of downstream elements; (ii) downstream elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation, which often occurs after cytidine residues that are 3' to the so-called downstream element. While the upstream element is required for efficient 3' end formation, alterations of the downstream element and poly(A) sites generally do not affect the efficiency of 3' end formation but appear to alter the positions of poly(A) sites. In addition, we have better defined the upstream elements by examining various derivatives of TATATA and TAG ... TATGTA, and we have examined the spatial requirements of the three elements by systematically introducing or deleting upstream and downstream elements and cytidine poly(A) sites.


2000 ◽  
Vol 6 (S2) ◽  
pp. 664-665
Author(s):  
Anthony S. Kowal ◽  
Thomas Scheibel ◽  
Susan L. Lindquist

In the yeast Saccharomyces cerevisiae, [PST] acts as an epigenetic modifier of translation termination efficiency. [PSI+] can be passed through generations of yeast cells via changes in protein conformation rather than changes in DNA or RNA, and has thus been referred to as a yeast prion. The [PSI+] determinant is the Sup35 protein. Sup35 can exist in two states - soluble and insoluble. Soluble Sup35 functions in translation termination, but when insoluble, stop codons are read through, resulting in incorrect protein products.Sup35 is composed of three distinct domains, N, M, and C. The N region is rich in glutamine and asparagine and is required for the [PST] phenotype to exist. M is a highly charged domain, and no specific function has been assigned to it. C is essential in yeast, as it is responsible for translation termination. The insoluble form of Sup35 has characteristics reminiscent of other prion proteins - in vitro it binds to the dye Congo Red and it exhibits apple green birefringence in polarized light.


2004 ◽  
Vol 72 (4) ◽  
pp. 2369-2378 ◽  
Author(s):  
Adriana Pina ◽  
Rita C. Valente-Ferreira ◽  
Eugênia E. W. Molinari-Madlum ◽  
Celidéia A. C. Vaz ◽  
Alexandre C. Keller ◽  
...  

ABSTRACT Host resistance to paracoccidiodomycosis, the main deep mycosis in Latin America, is mainly due to cellular immunity and gamma interferon (IFN-γ) production. To assess the role of interleukin-4 (IL-4), a Th2-inducing cytokine, pulmonary paracoccidioidomycosis was studied in IL-4-deficient (IL-4−/−) and wild-type (WT) C57BL/6 mice at the innate and acquired phases of immune response. Forty-eight hours after infection, equivalent numbers of viable Paracoccidioides brasiliensis yeast cells were recovered from the lungs of IL-4−/− and WT mice intratracheally infected with one million fungal cells. Alveolar macrophages from infected IL-4−/− mice controlled in vitro fungal growth more efficiently than macrophages from WT mice and secreted higher levels of nitric oxide. Compared with WT mice, IL-4−/− animals presented increased levels of pulmonary IFN-γ and augmented polymorphonuclear leukocyte influx to the lungs. Decreased pulmonary fungal loads were characterized in deficient mice at week 2 postinfection, concomitant with diminished presence of IL-10. At week 8, lower numbers of yeasts were recovered from lungs and liver of IL-4−/− mice associated with increased production of IFN-γ but impaired synthesis of IL-5 and IL-10. However, a clear shift to a Th1 pattern was not characterized, since IL-4−/− mice did not alter delayed-type hypersensitivity anergy or IL-2 levels. In addition, IL-4 deficiency resulted in significantly reduced levels of pulmonary IL-12, granulocyte-macrophage colony-stimulating factor, IL-3, monocyte chemotactic protein 1, and specific antibody isotypes. In IL-4−/− mice, well-organized granulomas restraining fungal cells replaced the more extensive lesions containing high numbers of fungi and inflammatory leukocytes developed by IL-4-sufficient mice. These results clearly showed that genetically determined deficiency of IL-4 can exert a protective role in pulmonary paracoccidioidomycosis.


Sign in / Sign up

Export Citation Format

Share Document