scholarly journals Whole-Genome Sequencing of Brachyspira hyodysenteriae Isolates From England and Wales Reveals Similarities to European Isolates and Mutations Associated With Reduced Sensitivity to Antimicrobials

2021 ◽  
Vol 12 ◽  
Author(s):  
Emma Stubberfield ◽  
Jonathan Sheldon ◽  
Roderick M. Card ◽  
Manal AbuOun ◽  
Jon Rogers ◽  
...  

Brachyspira hyodysenteriae is the principal cause of swine dysentery, a disease that threatens economic productivity of pigs in many countries as it can spread readily within and between farms, and only a small number of antimicrobials are authorized for treatment of pigs. In this study, we performed whole-genome sequencing (WGS) of 81 B. hyodysenteriae archived at the Animal and Plant Health Agency (APHA) from diagnostic submissions and herd monitoring in England and Wales between 2004 and 2015. The resulting genome sequences were analyzed alongside 34 genomes we previously published. Multi-locus sequence typing (MLST) showed a diverse population with 32 sequence types (STs) among the 115 APHA isolates, 25 of them identified only in England; while also confirming that the dominant European clonal complexes, CC8 and CC52, were common in the United Kingdom. A core-genome SNP tree typically clustered the isolates by ST, with isolates from some STs detected only within a specific region in England, although others were more widespread, suggesting transmission between different regions. Also, some STs were more conserved in their core genome than others, despite these isolates being from different holdings, regions and years. Minimum inhibitory concentrations to commonly used antimicrobials (Tiamulin, Valnemulin, Doxycycline, Lincomycin, Tylosin, Tylvalosin) were determined for 82 of the genome-sequenced isolates; genomic analysis revealed mutations generally correlated well with the corresponding resistance phenotype. There was a major swine dysentery intervention program in 2009–2010, and antimicrobial survival curves showed a significant reduction in sensitivity to tiamulin and valnemulin in isolates collected in and after 2010, compared to earlier isolates. This correlated with a significant increase in post-2009 isolates harboring the pleuromutilin resistance gene tva(A), which if present, may facilitate higher levels of resistance. The reduction in susceptibility of Brachyspira from diagnostic submissions to pleuromutilins, emphasizes the need for prudent treatment, control and eradication strategies.

2018 ◽  
Vol 71 ◽  
pp. 39-45 ◽  
Author(s):  
Alison Waldram ◽  
Gayle Dolan ◽  
Philip M. Ashton ◽  
Claire Jenkins ◽  
Timothy J. Dallman

2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Isabelle Bernaquez ◽  
Christiane Gaudreau ◽  
Pierre A. Pilon ◽  
Sadjia Bekal

Many public health laboratories across the world have implemented whole-genome sequencing (WGS) for the surveillance and outbreak detection of foodborne pathogens. PulseNet-affiliated laboratories have determined that most single-strain foodborne outbreaks are contained within 0–10 multi-locus sequence typing (MLST)-based allele differences and/or core genome single-nucleotide variants (SNVs). In addition to being a food- and travel-associated outbreak pathogen, most Shigella spp. cases occur through continuous person-to-person transmission, predominantly involving men who have sex with men (MSM), leading to long-term and recurrent outbreaks. Continuous transmission patterns coupled to genetic evolution under antibiotic treatment pressure require an assessment of existing WGS-based subtyping methods and interpretation criteria for cluster inclusion/exclusion. An evaluation of 4 WGS-based subtyping methods [SNVPhyl, coreMLST, core genome MLST (cgMLST) and whole-genome MLST (wgMLST)] was performed on 9 foodborne-, travel- and MSM-related retrospective outbreaks from a collection of 91 Shigella flexneri and 232  Shigella sonnei isolates to determine the methods’ epidemiological concordance, discriminatory power, robustness and ability to generate stable interpretation criteria. The discriminatory powers were ranked as follows: coreMLST<SNVPhyl<cgMLST<wgMLST (range: 0.970–1.000). The genetic differences observed for non-MSM-related Shigella spp. outbreaks respect the standard 0–10 allele/SNV guideline; however, mobile genetic element (MGE)-encoded loci caused inflated genetic variation and discrepant phylogenies for prolonged MSM-related S. sonnei outbreaks via wgMLST. The S. sonnei correlation coefficients of wgMLST were also the lowest at 0.680, 0.703 and 0.712 for SNVPhyl, coreMLST and cgMLST, respectively. Plasmid maintenance, mobilization and conjugation-associated genes were found to be the main source of genetic distance inflation in addition to prophage-related genes. Duplicated alleles arising from the repeated nature of IS elements were also responsible for many false cg/wgMLST differences. The coreMLST approach was shown to be the most robust, followed by SNVPhyl and wgMLST for inter-laboratory comparability. Our results highlight the need for validating species-specific subtyping methods based on microbial genome plasticity and outbreak dynamics in addition to the importance of filtering confounding MGEs for cluster detection.


Author(s):  
Ruth R. Miller ◽  
Morgan G. I. Langille ◽  
Vincent Montoya ◽  
Anamaria Crisan ◽  
Aleksandra Stefanovic ◽  
...  

Background.Streptococcus pneumoniaecan cause a wide spectrum of disease, including invasive pneumococcal disease (IPD). From 2005 to 2009 an outbreak of IPD occurred in Western Canada, caused by aS. pneumoniaestrain with multilocus sequence type (MLST) 289 and serotype 5. We sought to investigate the incidence of IPD due to thisS. pneumoniaestrain and to characterize the outbreak in British Columbia using whole-genome sequencing.Methods. IPD was defined according to Public Health Agency of Canada guidelines. Two isolates representing the beginning and end of the outbreak were whole-genome sequenced. The sequences were analyzed for single nucleotide variants (SNVs) and putative genomic islands.Results. The peak of the outbreak in British Columbia was in 2006, when 57% of invasiveS. pneumoniaeisolates were serotype 5. Comparison of two whole-genome sequenced strains showed only 10 SNVs between them. A 15.5 kb genomic island was identified in outbreak strains, allowing the design of a PCR assay to track the spread of the outbreak strain.Discussion. We show that the serotype 5 MLST 289 strain contains a distinguishing genomic island, which remained genetically consistent over time. Whole-genome sequencing holds great promise for real-time characterization of outbreaks in the future and may allow responses tailored to characteristics identified in the genome.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Aakash Balaji ◽  
Egon A. Ozer ◽  
Larry K. Kociolek

ABSTRACT Whole-genome sequencing (WGS) is a highly sensitive method for identifying genetic relatedness and transmission of Clostridioides difficile strains. Previous studies suggest that as few as 3 core genome single-nucleotide variants (SNVs) discriminate between genetically distinct isolates. Because a single C. difficile colony is selected from culture for WGS, significant within-host genetic diversity could preclude identification of transmission events. To evaluate the likelihood of missed transmission events using WGS of single colonies from culture, we examined within-host genetic diversity among C. difficile isolates collected from children. We performed WGS using an Illumina MiSeq instrument on 8 C. difficile colonies randomly selected from each culture performed on stool collected from 10 children (8 children diagnosed with C. difficile infection and 2 children with asymptomatic carriage); 77/80 (96%) isolate sequences were successfully assembled. Among 8/10 (80%) children, all isolates were the same sequence type (ST). The other 2 children each had mixed infection with two STs, although one ST predominated. Among 9/10 (90%) children, isotypic isolates differed by ≤2 SNVs; an isotypic isolate in the remaining child differed by 3 to SNVs relative to the other isolates from that child. Overall, among the 77 isolates collected from 10 stool cultures, 74/77 (96%) were clonal (i.e., same ST and ≤2 core genome SNVs) to other isolates in stool culture. In summary, we identified rare C. difficile within-host genetic diversity in children, suggesting that WGS of a single colony from stool is likely to appropriately characterize isolate clonality and putative transmission events in the majority of cases.


2019 ◽  
Vol 7 ◽  
Author(s):  
Marie Anne Chattaway ◽  
Timothy J. Dallman ◽  
Lesley Larkin ◽  
Satheesh Nair ◽  
Jacquelyn McCormick ◽  
...  

2019 ◽  
Vol 31 (2) ◽  
pp. 235-240 ◽  
Author(s):  
Jennifer L. Jones ◽  
Leyi Wang ◽  
Olgica Ceric ◽  
Sarah M. Nemser ◽  
David S. Rotstein ◽  
...  

Reports of raw meat pet food containing zoonotic foodborne bacteria, including Salmonella, Escherichia coli, and Listeria monocytogenes, are increasing. Contaminated raw pet food and biological waste from pets consuming those diets may pose a public health risk. The U.S. Food and Drug Administration Veterinary Laboratory Investigation and Response Network conducted 2 case investigations, involving 3 households with animal illnesses, which included medical record review, dietary and environmental exposure interviews, animal sample testing, and whole genome sequencing (WGS) of bacteria isolated from the pets and the raw pet food. For each case investigation, WGS with core genome multi-locus sequence typing analysis showed that the animal clinical isolates were closely related to one or more raw pet food bacterial isolates. WGS and genomic analysis of paired animal clinical and animal food isolates can confirm suspected outbreaks of animal foodborne illness.


2019 ◽  
Vol 57 (6) ◽  
Author(s):  
R. C. Jones ◽  
L. G. Harris ◽  
S. Morgan ◽  
M. C. Ruddy ◽  
M. Perry ◽  
...  

ABSTRACT An inability to standardize the bioinformatic data produced by whole-genome sequencing (WGS) has been a barrier to its widespread use in tuberculosis phylogenetics. The aim of this study was to carry out a phylogenetic analysis of tuberculosis in Wales, United Kingdom, using Ridom SeqSphere software for core genome multilocus sequence typing (cgMLST) analysis of whole-genome sequencing data. The phylogenetics of tuberculosis in Wales have not previously been studied. Sixty-six Mycobacterium tuberculosis isolates (including 42 outbreak-associated isolates) from south Wales were sequenced using an Illumina platform. Isolates were assigned to principal genetic groups, single nucleotide polymorphism (SNP) cluster groups, lineages, and sublineages using SNP-calling protocols. WGS data were submitted to the Ridom SeqSphere software for cgMLST analysis and analyzed alongside 179 previously lineage-defined isolates. The data set was dominated by the Euro-American lineage, with the sublineage composition being dominated by T, X, and Haarlem family strains. The cgMLST analysis successfully assigned 58 isolates to major lineages, and the results were consistent with those obtained by traditional SNP mapping methods. In addition, the cgMLST scheme was used to resolve an outbreak of tuberculosis occurring in the region. This study supports the use of a cgMLST method for standardized phylogenetic assignment of tuberculosis isolates and for outbreak resolution and provides the first insight into Welsh tuberculosis phylogenetics, identifying the presence of the Haarlem sublineage commonly associated with virulent traits.


2018 ◽  
Vol 56 (6) ◽  
Author(s):  
Sven Halbedel ◽  
Rita Prager ◽  
Stephan Fuchs ◽  
Eva Trost ◽  
Guido Werner ◽  
...  

ABSTRACT Listeria monocytogenes causes foodborne outbreaks with high mortality. For improvement of outbreak cluster detection, the German consiliary laboratory for listeriosis implemented whole-genome sequencing (WGS) in 2015. A total of 424 human L. monocytogenes isolates collected in 2007 to 2017 were subjected to WGS and core-genome multilocus sequence typing (cgMLST). cgMLST grouped the isolates into 38 complexes, reflecting 4 known and 34 unknown disease clusters. Most of these complexes were confirmed by single nucleotide polymorphism (SNP) calling, but some were further differentiated. Interestingly, several cgMLST cluster types were further subtyped by pulsed-field gel electrophoresis, partly due to phage insertions in the accessory genome. Our results highlight the usefulness of cgMLST for routine cluster detection but also show that cgMLST complexes require validation by methods providing higher typing resolution. Twelve cgMLST clusters included recent cases, suggesting activity of the source. Therefore, the cgMLST nomenclature data presented here may support future public health actions.


Sign in / Sign up

Export Citation Format

Share Document