scholarly journals Improvement of the Biosynthesis of Resveratrol in Endophytic Fungus (Alternaria sp. MG1) by the Synergistic Effect of UV Light and Oligomeric Proanthocyanidins

2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Lu ◽  
Junling Shi ◽  
Xixi Zhao ◽  
Yuyang Song ◽  
Yi Qin ◽  
...  

Resveratrol, a natural polyphenol compound with multiple bioactivities, is widely used in food and pharmaceutical industry. Endophytic fungus Alternaria sp. MG1, as a native producer of resveratrol, shows increasing potential application. However, strategies for improvement of the biosynthesis of resveratrol in this species are still scarce. In this study, different elicitors were used to investigate their effect on the biosynthesis of resveratrol in MG1 and the induction mechanism. Ultrasound and sodium butyrate had no effect and slight inhibition on the resveratrol production and related gene expression, respectively. UV radiation and co-culture with Phomopsis sp. XP-8 significantly promoted the biosynthesis of resveratrol with the highest production (240.57μg/l) coming from UV 20min. Co-culture altered the profiles of secondary metabolites in MG1 by promoting and inhibiting the synthesis of stilbene and lignin compounds, respectively, and generating new flavonoids ((+/−)-taxifolin, naringin, and (+)-catechin). Oligomeric proanthocyanidins (OPC) also showed an obviously positive influence, leading to an increase in resveratrol production by 10 to 60%. Two calcium-dependent protein kinases (CDPK) were identified, of which CDPK1 was found to be an important regulatory factor of OPC induction. Synergistic treatment of UV 20min and 100μm OPC increased the production of resveratrol by 70.37% compared to control and finally reached 276.31μg/l.

2018 ◽  
Vol 34 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Hemant B Kardile ◽  
◽  
Vikrant ◽  
Nirmal Kant Sharma ◽  
Ankita Sharma ◽  
...  

2020 ◽  
Author(s):  
Dhaval Patel ◽  
Mohd Athar ◽  
Prakash C. Jha

ABSTRACTRecent advances in the metal-organic framework (MOF) have accelerated the discovery of novel metal-based anticancer, antibacterial and antimalarial compounds. This is substantiated by many serendipitously discovered metals (Ru, Rh, and Ir) based inhibitors that established the importance of metal inserted into the known organic scaffold. Conversely, it is possible to design novel bioactive compounds by mimicking hypervalent carbon atoms by transition metals. This process can be facilitated by computational drug discovery by treating metal center using optimized parameters that can be used for molecular docking and molecular dynamics simulations. Further, the method can be plugged with high computational power and refined algorithms to interpret chemical phenomena with atomic-level insights. In the present work, we have demonstrated an approach for parameterizing three organometallic ligands (FLL, E52, and staurosporine) using MCPB.py. In particular, we report that E52 and FLL have a better shape complimentary and affinity compared to staurosporine identified inhibitor (staurosporine) against Calcium-dependent protein kinases 2 (CDPK2). This study also revealed that a flexible approach (ensemble) outperforms for the given target with dynamic movements. The calculated MMPBSA energies for staurosporine, FLL and E52 were −66.461 ± 2.192, −67.182 ± 1.971 and −91.339 ± 2.745 kcal/mol respectively.


2007 ◽  
Vol 19 (10) ◽  
pp. 3019-3036 ◽  
Author(s):  
Sai-Yong Zhu ◽  
Xiang-Chun Yu ◽  
Xiao-Jing Wang ◽  
Rui Zhao ◽  
Yan Li ◽  
...  

2002 ◽  
Vol 277 (25) ◽  
pp. 22407-22413 ◽  
Author(s):  
Jean-Claude Gevrey ◽  
Martine Cordier-Bussat ◽  
Eric Némoz-Gaillard ◽  
Jean-Alain Chayvialle ◽  
Jacques Abello

Sign in / Sign up

Export Citation Format

Share Document