scholarly journals Reassortment Network of Influenza A Virus

2021 ◽  
Vol 12 ◽  
Author(s):  
Xingfei Gong ◽  
Mingda Hu ◽  
Wei Chen ◽  
Haoyi Yang ◽  
Boqian Wang ◽  
...  

Influenza A virus (IAV) genomes are composed of eight single-stranded RNA segments. Genetic exchange through reassortment of the segmented genomes often endows IAVs with new genetic characteristics, which may affect transmissibility and pathogenicity of the viruses. However, a comprehensive understanding of the reassortment history of IAVs remains lacking. To this end, we assembled 40,296 whole-genome sequences of IAVs for analysis. Using a new clustering method based on Mean Pairwise Distances in the phylogenetic trees, we classified each segment of IAVs into clades. Correspondingly, reassortment events among IAVs were detected by checking the segment clade compositions of related genomes under specific environment factors and time period. We systematically identified 1,927 possible reassortment events of IAVs and constructed their reassortment network. Interestingly, minimum spanning tree of the reassortment network reproved that swine act as an intermediate host in the reassortment history of IAVs between avian species and humans. Moreover, reassortment patterns among related subtypes constructed in this study are consistent with previous studies. Taken together, our genome-wide reassortment analysis of all the IAVs offers an overview of the leaping evolution of the virus and a comprehensive network representing the relationships of IAVs.

2021 ◽  
Author(s):  
Xingfei Gong ◽  
Mingda Hu ◽  
Wei Chen ◽  
Haoyi Yang ◽  
Boqian Wang ◽  
...  

AbstractInfluenza A virus (IAV) genomes are composed of eight single-stranded RNA segments. Genetic exchange through reassortment of the segmented genomes often endows IAVs with new genetic characteristics, which may affect transmissibility and pathogenicity. However, a comprehensive understood of the reassortment history of IAVs remains poorly studied. To this end, we assembled 40296 whole-genome sequences of IAVs for analysis. Using a new clustering method based on Mean Pairwise Distances in the phylogenetic trees, we classified each segment of IAVs into clades. Correspondingly, reassortment events among IAVs were detected by checking the segment clade compositions of related genomes under specific environment factors and time period. We systematically identified 1927 possible reassortment events of IAVs and constructed their reassortment network. Interestingly, minimum spanning tree of the reassortment network reproved that swine act as an intermediate host in the reassortment history of IAVs between avian and human. Moreover, reassortment patterns among related subtypes constructed in this study are consistent with previous studies. Taken together, our genome-wide reassorment analysis of all the IAVs offers an overview of the leaping evolution of the virus and a comprehensive network representing the relationships of IAVs.


Author(s):  
O. Smutko ◽  
L. Radchenko ◽  
A. Mironenko

The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software. Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus.


2018 ◽  
Vol 12 (4) ◽  
pp. 497-507 ◽  
Author(s):  
Han Sol Lee ◽  
Ji Yun Noh ◽  
Joon Young Song ◽  
Hee Jin Cheong ◽  
Won Suk Choi ◽  
...  

mBio ◽  
2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Thomas O. Edinger ◽  
Marie O. Pohl ◽  
Emilio Yángüez ◽  
Silke Stertz

ABSTRACT Human cathepsin W (CtsW) is a cysteine protease, which was identified in a genome-wide RNA interference (RNAi) screen to be required for influenza A virus (IAV) replication. In this study, we show that reducing the levels of expression of CtsW reduces viral titers for different subtypes of IAV, and we map the target step of CtsW requirement to viral entry. Using a set of small interfering RNAs (siRNAs) targeting CtsW, we demonstrate that knockdown of CtsW results in a decrease of IAV nucleoprotein accumulation in the nuclei of infected cells at 3 h postinfection. Assays specific for the individual stages of IAV entry further show that attachment, internalization, and early endosomal trafficking are not affected by CtsW knockdown. However, we detected impaired escape of viral particles from late endosomes in CtsW knockdown cells. Moreover, fusion analysis with a dual-labeled influenza virus revealed a significant reduction in fusion events, with no detectable impact on endosomal pH, suggesting that CtsW is required at the stage of viral fusion. The defect in IAV entry upon CtsW knockdown could be rescued by ectopic expression of wild-type CtsW but not by the expression of a catalytically inactive mutant of CtsW, suggesting that the proteolytic activity of CtsW is required for successful entry of IAV. Our results establish CtsW as an important host factor for entry of IAV into target cells and suggest that CtsW could be a promising target for the development of future antiviral drugs. IMPORTANCE Increasing levels of resistance of influenza viruses to available antiviral drugs have been observed. Development of novel treatment options is therefore of high priority. In parallel to the classical approach of targeting viral enzymes, a novel strategy is pursued: cell-dependent factors of the virus are identified with the aim of developing small-molecule inhibitors against a cellular target that the virus relies on. For influenza A virus, several genome-wide RNA interference (RNAi) screens revealed hundreds of potential cellular targets. However, we have only limited knowledge on how these factors support virus replication, which would be required for drug development. We have characterized cathepsin W, one of the candidate factors, and found that cathepsin W is required for escape of influenza virus from the late endosome. Importantly, this required the proteolytic activity of cathepsin W. We therefore suggest that cathepsin W could be a target for future host cell-directed antiviral therapies.


2016 ◽  
Author(s):  
Champak R. Beeravolu ◽  
Michael J. Hickerson ◽  
Laurent A.F. Frantz ◽  
Konrad Lohse

AbstractWe introduce ABLE (Approximate Blockwise Likelihood Estimation), a novel composite likelihood framework based on a recently introduced summary of sequence variation: the blockwise site frequency spectrum (bSFS). This simulation-based framework uses the the frequencies of bSFS configurations to jointly model demographic history and recombination and is explicitly designed to make inference using multiple whole genomes or genome-wide multi-locus data (e.g. RADSeq) catering to the needs of researchers studying model or non-model organisms respectively. The flexible nature of our method further allows for arbitrarily complex population histories using unphased and unpolarized whole genome sequences. In silico experiments demonstrate accurate parameter estimates across a range of divergence models with increasing complexity, and as a proof of principle, we infer the demographic history of the two species of orangutan from multiple genome sequences (over 160 Mbp in length) from each species. Our results indicate that the two orangutan species split approximately 650-950 thousand years ago but experienced a pulse of secondary contact much more recently, most likely during a period of low sea-level South East Asia (∼300,000 years ago). Unlike previous analyses we can reject a history of continuous gene flow and co-estimate genome-wide recombination. ABLE is available for download at https://github.com/champost/ABLE.


2008 ◽  
Vol 4 (2) ◽  
pp. e1000012 ◽  
Author(s):  
Martha I. Nelson ◽  
Cécile Viboud ◽  
Lone Simonsen ◽  
Ryan T. Bennett ◽  
Sara B. Griesemer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document