scholarly journals When DNA Polymerases Multitask: Functions Beyond Nucleotidyl Transfer

2022 ◽  
Vol 8 ◽  
Author(s):  
Denisse Carvajal-Maldonado ◽  
Lea Drogalis Beckham ◽  
Richard D. Wood ◽  
Sylvie Doublié

DNA polymerases catalyze nucleotidyl transfer, the central reaction in synthesis of DNA polynucleotide chains. They function not only in DNA replication, but also in diverse aspects of DNA repair and recombination. Some DNA polymerases can perform translesion DNA synthesis, facilitating damage tolerance and leading to mutagenesis. In addition to these functions, many DNA polymerases conduct biochemically distinct reactions. This review presents examples of DNA polymerases that carry out nuclease (3ʹ—5′ exonuclease, 5′ nuclease, or end-trimming nuclease) or lyase (5′ dRP lyase) extracurricular activities. The discussion underscores how DNA polymerases have a remarkable ability to manipulate DNA strands, sometimes involving relatively large intramolecular movement.

Mutagenesis ◽  
2019 ◽  
Author(s):  
Zhenyu Zou ◽  
Tingting Liang ◽  
Zhongyan Xu ◽  
Jiayu Xie ◽  
Shuming Zhang ◽  
...  

Abstract Abasic site as a common DNA lesion blocks DNA replication and is highly mutagenic. Protein interactions in T7 DNA replisome facilitate DNA replication and translesion DNA synthesis. However, bypass of an abasic site by T7 DNA replisome has never been investigated. In this work, we used T7 DNA replisome and T7 DNA polymerase alone as two models to study DNA replication on encountering an abasic site. Relative to unmodified DNA, abasic site strongly inhibited primer extension and completely blocked strand-displacement DNA synthesis, due to the decreased fraction of enzyme–DNA productive complex and the reduced average extension rates. Moreover, abasic site at DNA fork inhibited the binding of DNA polymerase or helicase onto fork and the binding between polymerase and helicase at fork. Notably and unexpectedly, we found DNA polymerase alone bypassed an abasic site on primer/template (P/T) substrate more efficiently than did polymerase and helicase complex bypass it at fork. The presence of gp2.5 further inhibited the abasic site bypass at DNA fork. Kinetic analysis showed that this inhibition at fork relative to that on P/T was due to the decreased fraction of productive complex instead of the average extension rates. Therefore, we found that protein interactions in T7 DNA replisome inhibited the bypass of DNA lesion, different from all the traditional concept that protein interactions or accessory proteins always promote DNA replication and DNA damage bypass, providing new insights in translesion DNA synthesis performed by DNA replisome.


2005 ◽  
Vol 19 (1) ◽  
pp. 143
Author(s):  
Errol C. Friedberg ◽  
Alan R. Lehmann ◽  
Robert P.P. Fuchs

2011 ◽  
Vol 286 (37) ◽  
pp. 32094-32104 ◽  
Author(s):  
Giuseppe Villani ◽  
Ulrich Hubscher ◽  
Nadege Gironis ◽  
Sinikka Parkkinen ◽  
Helmut Pospiech ◽  
...  

Metallomics ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 132-144 ◽  
Author(s):  
O. Novakova ◽  
N. P. Farrell ◽  
V. Brabec

The central linker of antitumor polynuclear Triplatin represents an important factor responsible for the lowered tolerance of its DNA double-base adducts by DNA polymerases.


2008 ◽  
Vol 191 (2) ◽  
pp. 665-672 ◽  
Author(s):  
Susan E. Cohen ◽  
Veronica G. Godoy ◽  
Graham C. Walker

ABSTRACT NusA, a modulator of RNA polymerase, interacts with the DNA polymerase DinB. An increased level of expression of dinB or umuDC suppresses the temperature sensitivity of the nusA11 strain, requiring the catalytic activities of these proteins. We propose that NusA recruits translesion DNA synthesis (TLS) polymerases to RNA polymerases stalled at gaps, coupling TLS to transcription.


Biochemistry ◽  
2004 ◽  
Vol 43 (36) ◽  
pp. 11605-11615 ◽  
Author(s):  
Giuseppina Blanca ◽  
Giuseppe Villani ◽  
Igor Shevelev ◽  
Kristijan Ramadan ◽  
Silvio Spadari ◽  
...  

2005 ◽  
Vol 18 (5) ◽  
pp. 499-505 ◽  
Author(s):  
Errol C. Friedberg ◽  
Alan R. Lehmann ◽  
Robert P.P. Fuchs

Sign in / Sign up

Export Citation Format

Share Document