platinum compound
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 1)

2022 ◽  
pp. 107815522110735
Author(s):  
B. Zarei ◽  
M. Moeini Nodeh ◽  
O. Arasteh

Introduction Oxaliplatin is a third-generation platinum compound that used extensively for the treatment of various types of cancer especially gastrointestinal neoplasms. The main dose-limiting toxicities of oxaliplatin are hematological toxicity and peripheral sensory neuropathy. Case report A 42-year-old man with refractory peripheral T-cell lymphoma (PTCL) was admitted to receive GEMOX chemotherapy regimen (gemcitabine, oxaliplatin). Three days after receiving his third cycle of chemotherapy regimen, he was re-admitted to the emergency department with complaint of severe generalized weakness, and paraplegia in the lower extremities. According to clinical and para-clinical findings, chronic sensorimotor polyneuropathy with ongoing axonal loss was confirmed. Management & Outcome Intravenous dexamethasone 8 mg three times daily was started at the time of admission for the patient. Muscle weakness and sensory impairment improved dramatically within 10 days and the patient was able to walk with assistance. Discussion Several cases of neuropathy following oxaliplatin and only one case with gemcitabine-based chemotherapy regimen have been previously reported. However, motor symptoms are rare unless in the setting of acute neuropathy due to oxaliplatin. The most striking finding of our study was the incidence of a chronic sensorimotor axonaldemyelinating polyneuropathy in a patient who were subjected to oxaliplatin therapy. In conclusion, we report a case of severe generalized weakness and paraplegia following administration of Oxaliplatin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martina Cechova ◽  
Monika Beinhauerova ◽  
Vladimir Babak ◽  
Iva Slana ◽  
Petr Kralik

Mycobacterium avium subsp. paratuberculosis (MAP) represents a slow-growing bacterium causing paratuberculosis, especially in domestic and wild ruminants. Until recently, the assessment of MAP viability relied mainly on cultivation, which is very time consuming and is unable to detect viable but non-culturable cells. Subsequently, viability PCR, a method combining sample treatment with the DNA-modifying agent ethidium monoazide (EMA) or propidium monoazide (PMA) and quantitative PCR (qPCR), was developed, enabling the selective detection of MAP cells with an intact cell membrane. However, this technology requires a laborious procedure involving the need to work in the dark and on ice. In our study, a method based on a combination of platinum compound treatment and qPCR, which does not require such a demanding procedure, was investigated to determine mycobacterial cell viability. The conditions of platinum compound treatment were optimized for the fast-growing mycobacterium M. smegmatis using live and heat-killed cells. The optimal conditions consisting of a single treatment with 100 μM cis-dichlorodiammine platinum(II) for 60 min at 5°C resulted in a difference in quantification cycle (Cq) values between live and dead membrane-compromised mycobacterial cells of about 6 Cq corresponding to about 2 log10 units. This optimized viability assay was eventually applied to MAP cells and demonstrated a better ability to distinguish between live and heat-killed mycobacteria as compared to PMA. The viability assay combining the Pt treatment with qPCR thereby proved to be a promising method for the enumeration of viable MAP cells in foodstuffs, environmental, and clinical samples which could replace the time-consuming cultivation or laborious procedures required when using PMA.


2021 ◽  
Author(s):  
◽  
David J Koedyk

<p>This thesis reports the coordination chemistry of phosphinocarbonyl ligands with platinum and describes the influence of phosphine substituents on the mechanism of chelation and the coordination mode of the carbonyl moiety. The ligands synthesised were 2-diphenylphosphinobenzaldehyde (1), 2-diphenylphosphinoacetophenone (2), 2-bis(pentafluorophenyl)phosphinobenzaldehyde (3), and 2-di-tert-butylphosphinobenzaldehyde (4). Compounds 1, 3, and 4 were selected on the basis of their steric bulk and extent to which they donate electron density to the metal. Compound 2 contained the same phosphine substituents to 1, but is the methyl ketone analogue and therefore does not contain the CHO moiety. The cone angle and electronic parameter of compounds 1–4 were compared to the reported values of PPh3, PPh(C6F5)2, and PPhtBu2. Compounds 3 and 4 were similarly bulky, and had larger cone angles than 1. The electron donating capacity of compound 4 was greater than that of 1, and compound 3 was the least electron donating. A new synthetic method for the preparation of 4 is also reported. The coordination chemistry of ligands 1–4 was investigated with platinum(II) and platinum(0) starting materials to assess the influence of the steric and electronic parameters of the phosphine on the chelation of the ligand through the carbonyl to platinum. Coordination of the ligand went through the initial coordination of the phosphine and, depending on the identity of that phosphine, may be followed by chelation of the carbonyl moiety to form a P,C chelate. However, the site of the platinum–carbon bond in the P,C metallacycle depends on the ligand employed. Coordination of the phosphinoaldehyde ligands 1, 3, and 4 produced Pt-C bonds via the C-H activation of the aldehyde CHO group whereas for ketophosphine 2, C-H activation occurred at the α-methyl group. The rate at which C-H activation occurred increased with increasing electron donation from the phosphorus to platinum. Compound 4 chelates to platinum more rapidly than compound 1, while 3 did not undergo chelation at room temperature. Although chelation was only observed to occur via C-H activation, the final products of the coordination reactions of 1–4 with platinum starting materials differed depending on the identity of the ligand. The C-H activation of two molecules of 1 with platinum(II) or platinum(0) produced a platina-β-diketone, cis-[Pt(P,C-2-PPh2C6H4CO)2] (21), which is capable of coordinating to H+, Li+, BF2 +, and [Rh(1,5-cyclooctadiene)]+ between the mutually cis carbonyl groups. One carbonyl moiety of 21 can also undergo condensation with primary amines and ammonia to produce platina-β-ketoimine complexes. The ketone moiety of ligand 2 reacted with platinum(II) starting materials through C-H activation of the terminal methyl group to form the six-membered bis-chelate complex analogous to complex 21. The reaction of 2 with platinum(0) starting materials resulted in the formation of a platinum hydride intermediate which mediated chelation through the partial reduction of the ketone group of one ligand, to form the product, [Pt(P,C-2-PPh2C6H4COCH2)(P,C-2-PPh2C6H4C(OH)CH3)] (48) . The reaction of 3 with [PtMe2(1,5-hexadiene)] at elevated temperatures resulted in the formation of [Pt(P,C-2-PPh2C6H4)(P,C-2-PPh2C6H4CO)] (54) – a decarbonylated and ortho-metallated complex containing a four-membered metallacycle. The platinum-phosphorus bond in the four-membered ring of 54 has a bond distance of 2.385(2) Å – the longest Pt–P bond reported to date. Ligand 4 reacted rapidly with platinum(II) starting materials and produced numerous chelation products. Complexes of ligand 4 were only observed to contain mutually trans phosphines, likely due to the steric bulk of the tert-butyl substituents. Comparison of the coordination chemistry of ligands 1–4 suggests that the propensity toward C-H activation of the ligands is predominantly determined by the electronic character of the phosphine (although steric effects cannot be disregarded), and the more electron-rich the phosphine, the more rapidly chelation occurs.</p>


2021 ◽  
Author(s):  
◽  
David J Koedyk

<p>This thesis reports the coordination chemistry of phosphinocarbonyl ligands with platinum and describes the influence of phosphine substituents on the mechanism of chelation and the coordination mode of the carbonyl moiety. The ligands synthesised were 2-diphenylphosphinobenzaldehyde (1), 2-diphenylphosphinoacetophenone (2), 2-bis(pentafluorophenyl)phosphinobenzaldehyde (3), and 2-di-tert-butylphosphinobenzaldehyde (4). Compounds 1, 3, and 4 were selected on the basis of their steric bulk and extent to which they donate electron density to the metal. Compound 2 contained the same phosphine substituents to 1, but is the methyl ketone analogue and therefore does not contain the CHO moiety. The cone angle and electronic parameter of compounds 1–4 were compared to the reported values of PPh3, PPh(C6F5)2, and PPhtBu2. Compounds 3 and 4 were similarly bulky, and had larger cone angles than 1. The electron donating capacity of compound 4 was greater than that of 1, and compound 3 was the least electron donating. A new synthetic method for the preparation of 4 is also reported. The coordination chemistry of ligands 1–4 was investigated with platinum(II) and platinum(0) starting materials to assess the influence of the steric and electronic parameters of the phosphine on the chelation of the ligand through the carbonyl to platinum. Coordination of the ligand went through the initial coordination of the phosphine and, depending on the identity of that phosphine, may be followed by chelation of the carbonyl moiety to form a P,C chelate. However, the site of the platinum–carbon bond in the P,C metallacycle depends on the ligand employed. Coordination of the phosphinoaldehyde ligands 1, 3, and 4 produced Pt-C bonds via the C-H activation of the aldehyde CHO group whereas for ketophosphine 2, C-H activation occurred at the α-methyl group. The rate at which C-H activation occurred increased with increasing electron donation from the phosphorus to platinum. Compound 4 chelates to platinum more rapidly than compound 1, while 3 did not undergo chelation at room temperature. Although chelation was only observed to occur via C-H activation, the final products of the coordination reactions of 1–4 with platinum starting materials differed depending on the identity of the ligand. The C-H activation of two molecules of 1 with platinum(II) or platinum(0) produced a platina-β-diketone, cis-[Pt(P,C-2-PPh2C6H4CO)2] (21), which is capable of coordinating to H+, Li+, BF2 +, and [Rh(1,5-cyclooctadiene)]+ between the mutually cis carbonyl groups. One carbonyl moiety of 21 can also undergo condensation with primary amines and ammonia to produce platina-β-ketoimine complexes. The ketone moiety of ligand 2 reacted with platinum(II) starting materials through C-H activation of the terminal methyl group to form the six-membered bis-chelate complex analogous to complex 21. The reaction of 2 with platinum(0) starting materials resulted in the formation of a platinum hydride intermediate which mediated chelation through the partial reduction of the ketone group of one ligand, to form the product, [Pt(P,C-2-PPh2C6H4COCH2)(P,C-2-PPh2C6H4C(OH)CH3)] (48) . The reaction of 3 with [PtMe2(1,5-hexadiene)] at elevated temperatures resulted in the formation of [Pt(P,C-2-PPh2C6H4)(P,C-2-PPh2C6H4CO)] (54) – a decarbonylated and ortho-metallated complex containing a four-membered metallacycle. The platinum-phosphorus bond in the four-membered ring of 54 has a bond distance of 2.385(2) Å – the longest Pt–P bond reported to date. Ligand 4 reacted rapidly with platinum(II) starting materials and produced numerous chelation products. Complexes of ligand 4 were only observed to contain mutually trans phosphines, likely due to the steric bulk of the tert-butyl substituents. Comparison of the coordination chemistry of ligands 1–4 suggests that the propensity toward C-H activation of the ligands is predominantly determined by the electronic character of the phosphine (although steric effects cannot be disregarded), and the more electron-rich the phosphine, the more rapidly chelation occurs.</p>


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yixuan Liu ◽  
Keyu Zhu ◽  
Xiaolin Guan ◽  
Suhong Xie ◽  
Yanchun Wang ◽  
...  

Abstract Background Drug resistance and recurrence are main contributors to the poor prognosis of ovarian cancer. Cisplatin is a platinum compound which is widely used in the treatment of various solid tumors including ovarian cancer. Up to now, the mechanism of cisplatin resistance in ovarian cancer is unclear. Threonine and tyrosine kinase (TTK), an integral part of the spindle assembly checkpoint, may be a potential new target associated with chemotherapy sensitivity. Results TTK was up-regulated in the cisplatin-resistant ovarian cancer cell line. Down-regulation of TTK could recover the sensitivity of cisplatin-resistant ovarian cancer cells to cisplatin treatment. Mechanistically, the PI3K/AKT signaling pathway was activated in cisplatin-resistant cells, and this pathway would be affected by TTK expression. Furthermore, TTK was highly expressed in the tissues of ovarian cancer patients, especially those acquired resistance to cisplatin. Conclusions Our study revealed that TTK may be a promising therapeutic target for cisplatin-resistant ovarian cancer.


2021 ◽  
Vol 16 (10) ◽  
pp. S974-S975
Author(s):  
V. Velcheti ◽  
A.K. Ganti ◽  
A. Kumar ◽  
V. Patil ◽  
H. Grover ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 669
Author(s):  
Roser Velasco ◽  
Montserrat Alemany ◽  
Macarena Villagrán ◽  
Andreas A. Argyriou

Oxaliplatin (OXA) is a platinum compound primarily used in the treatment of gastrointestinal cancer. OXA-induced peripheral neurotoxicity (OXAIPN) is the major non-hematological dose-limiting toxicity of OXA-based chemotherapy and includes acute transient neurotoxic effects that appear soon after OXA infusion, and chronic non-length dependent sensory neuronopathy symmetrically affecting both upper and lower limbs in a stocking-and-glove distribution. No effective strategy has been established to reverse or treat OXAIPN. Thus, it is necessary to early predict the occurrence of OXAIPN during treatment and possibly modify the OXA-based regimen in patients at high risk as an early diagnosis and intervention may slow down neuropathy progression. However, identifying which patients are more likely to develop OXAIPN is clinically challenging. Several objective and measurable early biomarkers for OXAIPN prediction have been described in recent years, becoming useful for informing clinical decisions about treatment. The purpose of this review is to critically review data on currently available or promising predictors of OXAIPN. Neurological monitoring, according to predictive factors for increased risk of OXAIPN, would allow clinicians to personalize treatment, by monitoring at-risk patients more closely and guide clinicians towards better counseling of patients about neurotoxicity effects of OXA.


2021 ◽  
Vol 20 (Supplement_1) ◽  
Author(s):  
A Emelianov ◽  
YU Kirichenko ◽  
I Ilgisonis ◽  
YU Belenkov ◽  
E Privalova ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): The reported study was funded by Russian Foundation for Basic Research (RFBR) project number 19-315-90034 Background. Nowadays gastric cancer is one of the leading causes of world cancer mortality. Modern chemotherapy (CT) significantly improves survival and quality of life among these patients. Unfortunately, anticancer drugs induce some biomolecular disorders, which influence endothelial dysfunction and microcirculation lesions, subsequently leading to vasculo- and cardiotoxicity. The aim To study the dynamics of endothelial dysfunction’s (ED) biomarkers (endothelin-1 (ET-1), von Willebrand factor (VWF)) in patients with gastric cancer before and after CT. Material and methods The study included 25 patients with histologically confirmed gastric cancer (adenocarcinoma) stage II - IV, who have been treated by CT including platinum compound (oxaliplatin, cisplatin) and fluoropyrimidine group (5-fluorouracil, capecitabine) and are proven to be cardiovasculotoxic. All patients underwent blood tests, computer nailfold capillaroscopy and finger photoplethysmography (non-invasive assessment of vascular wall stiffness and endothelial function), electrocardiography (ECG), 24-hour ECG, echocardiography before CT and within a month after the last course. Results The median patients’ age was 64 ± 13 years; 68% were male; 52% had a prior cardiac illness: arterial hypertension (n = 12, 48%), coronary artery disease (n = 7, 28%), chronic heart failure (n = 3, 12%). The data obtained showed that ET-1 median levels were below normal values and did not change during CT: 0,95pg/ml (0,6;1,4) vs. 0,94pg/ml (0,7;1,4), р&lt;0,9 (N = 1–3pg/ml), before and after CT respectively. The level of VWF remained within normal ranges and did not significantly differ in cancer patients before and after treatment 0,75IU/ml (0,7;0,9) vs. 0,8IU/ml (0,74;0,9), р&lt;0,6 (N = 0,5–1,5IU/ml). Even before CT, endothelial dysfunction was detected, which significantly worsened after the treatment (occlusion index (IO) before and after CT 1.7 (1.38; 1.9) vs. 1.3 (1.2; 1.5), p &lt; 0.0002, respectively). During data analysis, significant correlations were found: between ET-1 level and IO (r = 0.554, p = 0,006), ET-1 and percentage of capillary recovery (r= -0.7, p = 0,029) [both parameters characterize functional abnormalities of the microvasculature], ET-1 and the quantity of supraventricular extrasystoles (r=-0.48, p = 0,032). Conclusion In this study, the dynamics of ED biomarkers in patients with gastric cancer were studied. Even though reliable changes were not proven for the assessed molecular parameters ET-1 and VWF during CT (supposing depletion of endothelin system, small patient cohort), the above parameters may be used for identifying early signs of close and long-term cardio/vasculotoxicity due to significant positive correlations with microvasculature lesions. Further bigger trials for identification of other accurate and effective laboratory methods of detecting early features of vasculotoxicity are required.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
C. Pöttgen ◽  
E. Gkika ◽  
M. Stahl ◽  
J. Abu Jawad ◽  
T. Gauler ◽  
...  

Abstract Background This prospective phase I/II trial assessed feasibility and efficacy of dose-escalated definitive chemoradiation after induction chemotherapy in locally advanced esophageal cancer. Primary study endpoint was loco-regional progression-free survival at 1 year. Methods Eligible patients received 2 cycles of induction chemotherapy with irinotecan, folinic acid and 5-fluorouracil weekly and cisplatin every 2 weeks (weeks 1–6, 8–13) followed by concurrent chemoradiation with cisplatin and irinotecan (weeks 14, 15, 17, 18, 20). Radiotherapy dose escalation was performed in three steps (60 Gy, 66 Gy, 72 Gy) using conventional fractionation, planning target volumes were delineated with the aid of 18F-FDG-PET/CT scans. During follow-up, endoscopic examinations were performed at regular intervals. Results Between 09/2006 and 02/2010, 17 patients were enrolled (male/female:13/4, median age: 59 [range 48–66] years, stage uT3N0/T3N1/T4N1: 4/12/1). One patient progressed during induction chemotherapy and underwent surgery. Of 16 patients treated with definitive chemoradiotherapy, 9 (56%) achieved complete response after completion of chemoradiation. One-, 2-, 3- and 5-year overall survival rates (OS) were 77% [95%CI: 59–100], 53% [34–83], 41% [23–73], and 29% [14–61], respectively. Loco-regional progression-free survival at 1, 3, and 5 years was 59% [40–88], 35% [19–67], and 29% [14–61], corresponding cumulative incidences of loco-regional progressions were 18% [4–39%], 35% [14–58%], and 41% [17–64%]. No treatment related deaths occurred. Grade 3 toxicities during induction therapy were: neutropenia (41%), diarrhoea (41%), during combined treatment: neutropenia (62%) and thrombocytopenia (25%). Conclusions Dose-escalated radiotherapy and concurrent cisplatin/irinotecan after cisplatin/irinotecan/5FU induction chemotherapy was tolerable. The hypothesized phase II one-year loco-regional progression free survival rate of 74% was not achieved. Long-term survival compares well with other studies on definitive radiotherapy using irinotecan and cisplatin but is not better than recent trials using conventionally fractionated radiotherapy ad 50 Gy with concurrent paclitaxel or 5FU and platinum compound. Trial registration The present trial was registered as a phase I/II trial at the EudraCT database: Nr. 2005-006097-10 (https://www.clinicaltrialsregister.eu/ctr-search/trial/2005-006097-10/DE) and authorized to proceed on 2006-09-25.


2021 ◽  
Vol 22 (4) ◽  
pp. 2056
Author(s):  
Kitti Andreidesz ◽  
Balazs Koszegi ◽  
Dominika Kovacs ◽  
Viola Bagone Vantus ◽  
Ferenc Gallyas ◽  
...  

Triple-negative breast cancer (TNBC) has a poor prognosis as the therapy has several limitations, most importantly, treatment resistance. In this study we examined the different responses of triple-negative breast cancer line MDA-MB-231 and hormone receptor-positive breast cancer line MCF7 to a combined treatment including olaparib, a poly-(ADP ribose) polymerase (PARP) inhibitor, oxaliplatin, a third-generation platinum compound and LY294002, an Akt pathway inhibitor. We applied the drugs in a single, therapeutically relevant concentration individually and in all possible combinations, and we assessed the viability, type of cell death, reactive oxygen species production, cell-cycle phases, colony formation and invasive growth. In agreement with the literature, the MDA-MB-231 cells were more treatment resistant than the MCF7 cells. However, and in contrast with the findings of others, we detected no synergistic effect between olaparib and oxaliplatin, and we found that the Akt pathway inhibitor augmented the cytostatic properties of the platinum compound and/or prevented the cytoprotective effects of PARP inhibition. Our results suggest that, at therapeutically relevant concentrations, the cytotoxicity of the platinum compound dominated over that of the PARP inhibitor and the PI3K inhibitor, even though a regression-based model could have indicated an overall synergy at lower and/or higher concentrations.


Sign in / Sign up

Export Citation Format

Share Document