Human DNA Polymerases λ and β Show Different Efficiencies of Translesion DNA Synthesis past Abasic Sites and Alternative Mechanisms for Frameshift Generation†

Biochemistry ◽  
2004 ◽  
Vol 43 (36) ◽  
pp. 11605-11615 ◽  
Author(s):  
Giuseppina Blanca ◽  
Giuseppe Villani ◽  
Igor Shevelev ◽  
Kristijan Ramadan ◽  
Silvio Spadari ◽  
...  
2011 ◽  
Vol 286 (37) ◽  
pp. 32094-32104 ◽  
Author(s):  
Giuseppe Villani ◽  
Ulrich Hubscher ◽  
Nadege Gironis ◽  
Sinikka Parkkinen ◽  
Helmut Pospiech ◽  
...  

2005 ◽  
Vol 19 (1) ◽  
pp. 143
Author(s):  
Errol C. Friedberg ◽  
Alan R. Lehmann ◽  
Robert P.P. Fuchs

Metallomics ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 132-144 ◽  
Author(s):  
O. Novakova ◽  
N. P. Farrell ◽  
V. Brabec

The central linker of antitumor polynuclear Triplatin represents an important factor responsible for the lowered tolerance of its DNA double-base adducts by DNA polymerases.


DNA Repair ◽  
2014 ◽  
Vol 22 ◽  
pp. 41-52 ◽  
Author(s):  
David J. Taggart ◽  
Daniel M. Dayeh ◽  
Saul W. Fredrickson ◽  
Zucai Suo

2008 ◽  
Vol 191 (2) ◽  
pp. 665-672 ◽  
Author(s):  
Susan E. Cohen ◽  
Veronica G. Godoy ◽  
Graham C. Walker

ABSTRACT NusA, a modulator of RNA polymerase, interacts with the DNA polymerase DinB. An increased level of expression of dinB or umuDC suppresses the temperature sensitivity of the nusA11 strain, requiring the catalytic activities of these proteins. We propose that NusA recruits translesion DNA synthesis (TLS) polymerases to RNA polymerases stalled at gaps, coupling TLS to transcription.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Feng ◽  
Baochang Zhang ◽  
Ruyi Xu ◽  
Zhe Gao ◽  
Xiaotong Liu ◽  
...  

Abasic sites are among the most abundant DNA lesions encountered by cells. Their replication requires actions of specialized DNA polymerases. Herein, two archaeal specialized DNA polymerases were examined for their capability to perform translesion DNA synthesis (TLS) on the lesion, including Sulfolobuss islandicus Dpo2 of B-family, and Dpo4 of Y-family. We found neither Dpo2 nor Dpo4 is efficient to complete abasic sites bypass alone, but their sequential actions promote lesion bypass. Enzyme kinetics studies further revealed that the Dpo4’s activity is significantly inhibited at +1 to +3 site past the lesion, at which Dpo2 efficiently extends the primer termini. Furthermore, their activities are inhibited upon synthesis of 5–6 nt TLS patches. Once handed over to Dpo1, these substrates basically inactivate its exonuclease, enabling the transition from proofreading to polymerization of the replicase. Collectively, by functioning as an “extender” to catalyze further DNA synthesis past the lesion, Dpo2 bridges the activity gap between Dpo4 and Dpo1 in the archaeal TLS process, thus achieving more efficient lesion bypass.


2022 ◽  
Vol 8 ◽  
Author(s):  
Denisse Carvajal-Maldonado ◽  
Lea Drogalis Beckham ◽  
Richard D. Wood ◽  
Sylvie Doublié

DNA polymerases catalyze nucleotidyl transfer, the central reaction in synthesis of DNA polynucleotide chains. They function not only in DNA replication, but also in diverse aspects of DNA repair and recombination. Some DNA polymerases can perform translesion DNA synthesis, facilitating damage tolerance and leading to mutagenesis. In addition to these functions, many DNA polymerases conduct biochemically distinct reactions. This review presents examples of DNA polymerases that carry out nuclease (3ʹ—5′ exonuclease, 5′ nuclease, or end-trimming nuclease) or lyase (5′ dRP lyase) extracurricular activities. The discussion underscores how DNA polymerases have a remarkable ability to manipulate DNA strands, sometimes involving relatively large intramolecular movement.


Sign in / Sign up

Export Citation Format

Share Document