scholarly journals Specific White Matter Tracts and Diffusion Properties Predict Conversion From Mild Cognitive Impairment to Alzheimer’s Disease

2021 ◽  
Vol 13 ◽  
Author(s):  
David B. Stone ◽  
Sephira G. Ryman ◽  
Alexandra P. Hartman ◽  
Christopher J. Wertz ◽  
Andrei A. Vakhtin ◽  
...  

Identifying biomarkers that can assess the risk of developing Alzheimer’s Disease (AD) remains a significant challenge. In this study, we investigated the integrity levels of brain white matter in 34 patients with mild cognitive impairment (MCI) who later converted to AD and 53 stable MCI patients. We used diffusion tensor imaging (DTI) and automated fiber quantification to obtain the diffusion properties of 20 major white matter tracts. To identify which tracts and diffusion measures are most relevant to AD conversion, we used support vector machines (SVMs) to classify the AD conversion and non-conversion MCI patients based on the diffusion properties of each tract individually. We found that diffusivity measures from seven white matter tracts were predictive of AD conversion with axial diffusivity being the most predictive diffusion measure. Additional analyses revealed that white matter changes in the central and parahippocampal terminal regions of the right cingulate hippocampal bundle, central regions of the right inferior frontal occipital fasciculus, and posterior and anterior regions of the left inferior longitudinal fasciculus were the best predictors of conversion from MCI to AD. An SVM based on these white matter tract regions achieved an accuracy of 0.75. These findings provide additional potential biomarkers of AD risk in MCI patients.

2021 ◽  
Author(s):  
Seyed Amir Zamanpour ◽  
Bahare Bigham ◽  
Mohamad-Hoseyn Sigari ◽  
Hoda Zare

Abstract Introduction: Accurate, fast, and reliable diagnosis of Alzheimer's Disease (AD) from Mild Cognitive Impairment (MCI) is crucial for prescribing proper treatment and prevention of disease progression. At first glance, structural and diffusion MRI images, are affected by neurodegenerative proceedings in AD and MCI. In this study, we are looking for the most effective features to detect and differentiate between healthy normal control (NC), AD, and MCI groups by non-invasive Magnetic Resonance Imaging (MRI) method and propose the automatic multi-class classification using the structural and diffusion MRI Features of the brain. Methods: The structural and diffusion MRI data were downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database on three groups including AD, MCI, and NC subjects. Four famous classification models of machine learning were used to discover the best classification as a diagnostic tool for separation of the NC, AD and MCI groups. Results: Taken together, our results from this study lead to classify three groups for differentiation between the NC group and patients with MCI and AD, with average accuracy factor 89.9% for Support Vector Machine (SVM) and 91.9% for Artificial Neural Network (ANN) using selected features. Conclusions: Top 9 regions repetitive of WM based on four types of features are the caudate nucleus, corpus callosum, hippocampus, para hippocampus, temporal gyrus, putamen nucleus, cingulate gyrus, the region of 36 and 3 Brodmann. Therefore, these regions could be considered for identifying, monitoring, and future drug trials that could target this brain region to AD and MCI Management.


2021 ◽  
pp. 1-14
Author(s):  
Fangmei He ◽  
Yuchen Zhang ◽  
Xiaofeng Wu ◽  
Youjun Li ◽  
Jie Zhao ◽  
...  

Background: Amnestic mild cognitive impairment (aMCI) is the transitional stage between normal aging and Alzheimer’s disease (AD). Some aMCI patients will progress into AD eventually, whereas others will not. If the trajectory of aMCI can be predicted, it would enable early diagnosis and early therapy of AD. Objective: To explore the development trajectory of aMCI patients, we used diffusion tensor imaging to analyze the white matter microstructure changes of patients with different trajectories of aMCI. Methods: We included three groups of subjects:1) aMCI patients who convert to AD (MCI-P); 2) aMCI patients who remain in MCI status (MCI-S); 3) normal controls (NC). We analyzed the fractional anisotropy and mean diffusion rate of brain regions, and we adopted logistic binomial regression model to predicate the development trajectory of aMCI. Results: The fraction anisotropy value is significantly reduced, the mean diffusivity value is significantly increased in the two aMCI patient groups, and the MCI-P patients presented greater changes. Significant changes are mainly located in the cingulum, fornix, hippocampus, and uncinate fasciculus. These changed brain regions significantly correlated with the patient’s Mini-Mental State Examination scores. Conclusion: The study predicted the disease trajectory of different types of aMCI patients based on the characteristic values of the above-mentioned brain regions. The prediction accuracy rate can reach 90.2%, and the microstructure characteristics of the right cingulate band and the right hippocampus may have potential clinical application value to predict the disease trajectory.


2021 ◽  
Vol 15 ◽  
Author(s):  
Justine Staal ◽  
Francesco Mattace-Raso ◽  
Hennie A. M. Daniels ◽  
Johannes van der Steen ◽  
Johan J. M. Pel

BackgroundResearch into Alzheimer’s disease has shifted toward the identification of minimally invasive and less time-consuming modalities to define preclinical stages of Alzheimer’s disease.MethodHere, we propose visuomotor network dysfunctions as a potential biomarker in AD and its prodromal stage, mild cognitive impairment with underlying the Alzheimer’s disease pathology. The functionality of this network was tested in terms of timing, accuracy, and speed with goal-directed eye-hand tasks. The predictive power was determined by comparing the classification performance of a zero-rule algorithm (baseline), a decision tree, a support vector machine, and a neural network using functional parameters to classify controls without cognitive disorders, mild cognitive impaired patients, and Alzheimer’s disease patients.ResultsFair to good classification was achieved between controls and patients, controls and mild cognitive impaired patients, and between controls and Alzheimer’s disease patients with the support vector machine (77–82% accuracy, 57–93% sensitivity, 63–90% specificity, 0.74–0.78 area under the curve). Classification between mild cognitive impaired patients and Alzheimer’s disease patients was poor, as no algorithm outperformed the baseline (63% accuracy, 0% sensitivity, 100% specificity, 0.50 area under the curve).Comparison with Existing Method(s)The classification performance found in the present study is comparable to that of the existing CSF and MRI biomarkers.ConclusionThe data suggest that visuomotor network dysfunctions have potential in biomarker research and the proposed eye-hand tasks could add to existing tests to form a clear definition of the preclinical phenotype of AD.


2021 ◽  
Author(s):  
Guixia Kang ◽  
Peiqi Luo ◽  
Xin Xu ◽  
Ying Han ◽  
Xuemei Li ◽  
...  

Abstract Objective: To assess the progression of volume changes in hippocampus and its subfields of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI), and to explore the association of the hippocampus and its subfields volumes with cognitive function.Methods: Five groups of participants including 35 normal controls (NC) persons, 30 MCI patients, 30 Mild AD patients, 30 Moderate AD patients and 8 Severe AD patients received structural MRI brain scans. Freesurfer6.0 was used for automatically segmentation of MRI, and the left and right hippocampus were respectively divided into 12 subfields. By statistical analysis, the volumes of hippocampus and its subfields were compared between the five groups, and the correlation of the volumes with Mini-mental State Examination (MMSE) score was analyzed.Result & Conclusion: In the disease, each hippocampal subfield shows an uneven atrophy trajectory; The volumes of the subiculum and presubiculum are significantly different between Mild AD and MCI, which can contribute to the early diagnosis of AD; Parasubiculum is the least sensitive subfield for volume atrophy of AD, while subiculum, presubiculum, CA1, molecular_layer_HP and fimbria show much more significant volume changes. Meanwhile the volumes of these five subfields are positively correlated with MMSE, which may help in stage division of AD; Compared with the right hippocampus, the volume atrophy on the left side is more significantly, and the volumes are more significantly correlated with MMSE, So the left hippocampus and its subfields may provide a higher reference value for the clinical evaluation of AD than the right side.


Sign in / Sign up

Export Citation Format

Share Document