scholarly journals Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks

2021 ◽  
Vol 15 ◽  
Author(s):  
Brian Gardner ◽  
André Grüning

Experimental studies support the notion of spike-based neuronal information processing in the brain, with neural circuits exhibiting a wide range of temporally-based coding strategies to rapidly and efficiently represent sensory stimuli. Accordingly, it would be desirable to apply spike-based computation to tackling real-world challenges, and in particular transferring such theory to neuromorphic systems for low-power embedded applications. Motivated by this, we propose a new supervised learning method that can train multilayer spiking neural networks to solve classification problems based on a rapid, first-to-spike decoding strategy. The proposed learning rule supports multiple spikes fired by stochastic hidden neurons, and yet is stable by relying on first-spike responses generated by a deterministic output layer. In addition to this, we also explore several distinct, spike-based encoding strategies in order to form compact representations of presented input data. We demonstrate the classification performance of the learning rule as applied to several benchmark datasets, including MNIST. The learning rule is capable of generalizing from the data, and is successful even when used with constrained network architectures containing few input and hidden layer neurons. Furthermore, we highlight a novel encoding strategy, termed “scanline encoding,” that can transform image data into compact spatiotemporal patterns for subsequent network processing. Designing constrained, but optimized, network structures and performing input dimensionality reduction has strong implications for neuromorphic applications.

2018 ◽  
Vol 30 (6) ◽  
pp. 1514-1541 ◽  
Author(s):  
Friedemann Zenke ◽  
Surya Ganguli

A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.


2018 ◽  
Vol 23 (20) ◽  
pp. 10187-10198 ◽  
Author(s):  
Xiurui Xie ◽  
Guisong Liu ◽  
Qing Cai ◽  
Hong Qu ◽  
Malu Zhang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan K. George ◽  
Cesare Soci ◽  
Mario Miscuglio ◽  
Volker J. Sorger

AbstractMirror symmetry is an abundant feature in both nature and technology. Its successful detection is critical for perception procedures based on visual stimuli and requires organizational processes. Neuromorphic computing, utilizing brain-mimicked networks, could be a technology-solution providing such perceptual organization functionality, and furthermore has made tremendous advances in computing efficiency by applying a spiking model of information. Spiking models inherently maximize efficiency in noisy environments by placing the energy of the signal in a minimal time. However, many neuromorphic computing models ignore time delay between nodes, choosing instead to approximate connections between neurons as instantaneous weighting. With this assumption, many complex time interactions of spiking neurons are lost. Here, we show that the coincidence detection property of a spiking-based feed-forward neural network enables mirror symmetry. Testing this algorithm exemplary on geospatial satellite image data sets reveals how symmetry density enables automated recognition of man-made structures over vegetation. We further demonstrate that the addition of noise improves feature detectability of an image through coincidence point generation. The ability to obtain mirror symmetry from spiking neural networks can be a powerful tool for applications in image-based rendering, computer graphics, robotics, photo interpretation, image retrieval, video analysis and annotation, multi-media and may help accelerating the brain-machine interconnection. More importantly it enables a technology pathway in bridging the gap between the low-level incoming sensor stimuli and high-level interpretation of these inputs as recognized objects and scenes in the world.


2014 ◽  
Vol 144 ◽  
pp. 526-536 ◽  
Author(s):  
Jinling Wang ◽  
Ammar Belatreche ◽  
Liam Maguire ◽  
Thomas Martin McGinnity

2015 ◽  
Author(s):  
Ioannis Vlachos ◽  
Taskin Deniz ◽  
Ad Aertsen ◽  
Arvind Kumar

There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks. Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC besides steering the system back to a healthy state, it also recovers the computations performed by the underlying network. Finally, using our theory we isolate the role of single neuron and synapse properties in determining the stability of the closed-loop system.


2021 ◽  
Vol 23 (6) ◽  
pp. 317-326
Author(s):  
E.A. Ryndin ◽  
◽  
N.V. Andreeva ◽  
V.V. Luchinin ◽  
K.S. Goncharov ◽  
...  

In the current era, design and development of artificial neural networks exploiting the architecture of the human brain have evolved rapidly. Artificial neural networks effectively solve a wide range of common for artificial intelligence tasks involving data classification and recognition, prediction, forecasting and adaptive control of object behavior. Biologically inspired underlying principles of ANN operation have certain advantages over the conventional von Neumann architecture including unsupervised learning, architectural flexibility and adaptability to environmental change and high performance under significantly reduced power consumption due to heavy parallel and asynchronous data processing. In this paper, we present the circuit design of main functional blocks (neurons and synapses) intended for hardware implementation of a perceptron-based feedforward spiking neural network. As the third generation of artificial neural networks, spiking neural networks perform data processing utilizing spikes, which are discrete events (or functions) that take place at points in time. Neurons in spiking neural networks initiate precisely timing spikes and communicate with each other via spikes transmitted through synaptic connections or synapses with adaptable scalable weight. One of the prospective approach to emulate the synaptic behavior in hardware implemented spiking neural networks is to use non-volatile memory devices with analog conduction modulation (or memristive structures). Here we propose a circuit design for functional analogues of memristive structure to mimic a synaptic plasticity, pre- and postsynaptic neurons which could be used for developing circuit design of spiking neural network architectures with different training algorithms including spike-timing dependent plasticity learning rule. Two different circuits of electronic synapse were developed. The first one is an analog synapse with photoresistive optocoupler used to ensure the tunable conductivity for synaptic plasticity emulation. While the second one is a digital synapse, in which the synaptic weight is stored in a digital code with its direct conversion into conductivity (without digital-to-analog converter andphotoresistive optocoupler). The results of the prototyping of developed circuits for electronic analogues of synapses, pre- and postsynaptic neurons and the study of transient processes are presented. The developed approach could provide a basis for ASIC design of spiking neural networks based on CMOS (complementary metal oxide semiconductor) design technology.


2021 ◽  
Author(s):  
Ceca Kraišniković ◽  
Wolfgang Maass ◽  
Robert Legenstein

The brain uses recurrent spiking neural networks for higher cognitive functions such as symbolic computations, in particular, mathematical computations. We review the current state of research on spike-based symbolic computations of this type. In addition, we present new results which show that surprisingly small spiking neural networks can perform symbolic computations on bit sequences and numbers and even learn such computations using a biologically plausible learning rule. The resulting networks operate in a rather low firing rate regime, where they could not simply emulate artificial neural networks by encoding continuous values through firing rates. Thus, we propose here a new paradigm for symbolic computation in neural networks that provides concrete hypotheses about the organization of symbolic computations in the brain. The employed spike-based network models are the basis for drastically more energy-efficient computer hardware – neuromorphic hardware. Hence, our results can be seen as creating a bridge from symbolic artificial intelligence to energy-efficient implementation in spike-based neuromorphic hardware.


2020 ◽  
Vol 34 (02) ◽  
pp. 1316-1323
Author(s):  
Zuozhu Liu ◽  
Thiparat Chotibut ◽  
Christopher Hillar ◽  
Shaowei Lin

Motivated by the celebrated discrete-time model of nervous activity outlined by McCulloch and Pitts in 1943, we propose a novel continuous-time model, the McCulloch-Pitts network (MPN), for sequence learning in spiking neural networks. Our model has a local learning rule, such that the synaptic weight updates depend only on the information directly accessible by the synapse. By exploiting asymmetry in the connections between binary neurons, we show that MPN can be trained to robustly memorize multiple spatiotemporal patterns of binary vectors, generalizing the ability of the symmetric Hopfield network to memorize static spatial patterns. In addition, we demonstrate that the model can efficiently learn sequences of binary pictures as well as generative models for experimental neural spike-train data. Our learning rule is consistent with spike-timing-dependent plasticity (STDP), thus providing a theoretical ground for the systematic design of biologically inspired networks with large and robust long-range sequence storage capacity.


Sign in / Sign up

Export Citation Format

Share Document