scholarly journals Antisaccadic Eye Movements Are Correlated with Corpus Callosum White Matter Mean Diffusivity, Stroop Performance, and Symptom Burden in Mild Traumatic Brain Injury and Concussion

2016 ◽  
Vol 6 ◽  
Author(s):  
Windsor Kwan-Chun Ting ◽  
Tom A. Schweizer ◽  
Jane Topolovec-Vranic ◽  
Michael D. Cusimano
2019 ◽  
Vol 36 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Kara M. Wendel ◽  
Jeong Bin Lee ◽  
Bethann M. Affeldt ◽  
Mary Hamer ◽  
Indira S. Harahap-Carrillo ◽  
...  

2019 ◽  
Vol 13 ◽  
pp. 117906951985862 ◽  
Author(s):  
Wouter S Hoogenboom ◽  
Todd G Rubin ◽  
Kenny Ye ◽  
Min-Hui Cui ◽  
Kelsey C Branch ◽  
...  

Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.


2020 ◽  
Vol 6 (32) ◽  
pp. eaaz6892 ◽  
Author(s):  
E. M. Palacios ◽  
J. P. Owen ◽  
E. L. Yuh ◽  
M. B. Wang ◽  
M. J. Vassar ◽  
...  

Neuroimaging biomarkers that can detect white matter (WM) pathology after mild traumatic brain injury (mTBI) and predict long-term outcome are needed to improve care and develop therapies. We used diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to investigate WM microstructure cross-sectionally and longitudinally after mTBI and correlate these with neuropsychological performance. Cross-sectionally, early decreases of fractional anisotropy and increases of mean diffusivity corresponded to WM regions with elevated free water fraction on NODDI. This elevated free water was more extensive in the patient subgroup reporting more early postconcussive symptoms. The longer-term longitudinal WM changes consisted of declining neurite density on NODDI, suggesting axonal degeneration from diffuse axonal injury for which NODDI is more sensitive than DTI. Therefore, NODDI is a more sensitive and specific biomarker than DTI for WM microstructural changes due to mTBI that merits further study for mTBI diagnosis, prognosis, and treatment monitoring.


Brain Injury ◽  
2016 ◽  
Vol 30 (12) ◽  
pp. 1501-1514 ◽  
Author(s):  
Ramtilak Gattu ◽  
Faith W. Akin ◽  
Anthony T. Cacace ◽  
Courtney D. Hall ◽  
Owen D. Murnane ◽  
...  

Brain ◽  
2014 ◽  
Vol 137 (7) ◽  
pp. 1876-1882 ◽  
Author(s):  
Tero Ilvesmäki ◽  
Teemu M. Luoto ◽  
Ullamari Hakulinen ◽  
Antti Brander ◽  
Pertti Ryymin ◽  
...  

2017 ◽  
Vol 34 (2) ◽  
pp. 291-299 ◽  
Author(s):  
Juan J. Herrera ◽  
Kurt Bockhorst ◽  
Shakuntala Kondraganti ◽  
Laura Stertz ◽  
João Quevedo ◽  
...  

2015 ◽  
Vol 8 ◽  
pp. 210-223 ◽  
Author(s):  
Mithun Diwakar ◽  
Deborah L. Harrington ◽  
Jun Maruta ◽  
Jamshid Ghajar ◽  
Fady El-Gabalawy ◽  
...  

2021 ◽  
Author(s):  
Paulo Branco ◽  
Noam Bosak ◽  
Jannis Bielefeld ◽  
Olivia Cong ◽  
Yelena Granovsky ◽  
...  

Mild traumatic brain injury, mTBI, is a leading cause of disability worldwide, with acute pain manifesting as one of its most debilitating symptoms. Understanding acute post-injury pain is important since it is a strong predictor of long-term outcomes. In this study, we imaged the brains of 172 patients with mTBI, following a motorized vehicle collision and used a machine learning approach to extract white matter structural and resting state fMRI functional connectivity measures to predict acute pain. Stronger white matter tracts within the sensorimotor, thalamic-cortical, and default-mode systems predicted 20% of the variance in pain severity within 72 hours of the injury. This result generalized in two independent groups: 39 mTBI patients and 13 mTBI patients without whiplash symptoms. White matter measures collected at 6-months after the collision still predicted mTBI pain at that timepoint (n = 36). These white-matter connections were associated with two nociceptive psychophysical outcomes tested at a remote body site – namely conditioned pain modulation and magnitude of suprathreshold pain–, and with pain sensitivity questionnaire scores. Our validated findings demonstrate a stable white-matter network, the properties of which determine a significant amount of pain experienced after acute injury, pinpointing a circuitry engaged in the transformation and amplification of nociceptive inputs to pain perception.


2016 ◽  
Vol 33 (22) ◽  
pp. 2000-2010 ◽  
Author(s):  
Elisabeth A. Wilde ◽  
Xiaoqi Li ◽  
Jill V. Hunter ◽  
Ponnada A. Narayana ◽  
Khader Hasan ◽  
...  

2019 ◽  
Vol 36 (4) ◽  
pp. 576-588 ◽  
Author(s):  
Benoit Mouzon ◽  
Corbin Bachmeier ◽  
Joseph Ojo ◽  
Christopher Acker ◽  
Scott Ferguson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document