scholarly journals Hierarchical Dynamic Causal Modeling of Resting-State fMRI Reveals Longitudinal Changes in Effective Connectivity in the Motor System after Thalamotomy for Essential Tremor

2017 ◽  
Vol 8 ◽  
Author(s):  
Hae-Jeong Park ◽  
Chongwon Pae ◽  
Karl Friston ◽  
Changwon Jang ◽  
Adeel Razi ◽  
...  
Author(s):  
Maksim G. Sharaev ◽  
Viktoria V. Zavyalova ◽  
Vadim L. Ushakov ◽  
Sergey I. Kartashov ◽  
Boris M. Velichkovsky

Author(s):  
Stefan Frässle ◽  
Samuel J. Harrison ◽  
Jakob Heinzle ◽  
Brett A. Clementz ◽  
Carol A. Tamminga ◽  
...  

Abstract“Resting-state” functional magnetic resonance imaging (rs-fMRI) is widely used to study brain connectivity. So far, researchers have been restricted to measures of functional connectivity that are computationally efficient but undirected, or to effective connectivity estimates that are directed but limited to small networks.Here, we show that a method recently developed for task-fMRI – regression dynamic causal modeling (rDCM) – extends to rs-fMRI and offers both directional estimates and scalability to whole-brain networks. First, simulations demonstrate that rDCM faithfully recovers parameter values over a wide range of signal-to-noise ratios and repetition times. Second, we test construct validity of rDCM in relation to an established model of effective connectivity, spectral DCM. Using rs-fMRI data from nearly 200 healthy participants, rDCM produces biologically plausible results consistent with estimates by spectral DCM. Importantly, rDCM is computationally highly efficient, reconstructing whole-brain networks (>200 areas) within minutes on standard hardware. This opens promising new avenues for connectomics.


2021 ◽  
Author(s):  
Stefan Frässle ◽  
Samuel J. Harrison ◽  
Jakob Heinzle ◽  
Brett A. Clementz ◽  
Carol A. Tamminga ◽  
...  

2017 ◽  
Vol 1 (3) ◽  
pp. 222-241 ◽  
Author(s):  
Adeel Razi ◽  
Mohamed L. Seghier ◽  
Yuan Zhou ◽  
Peter McColgan ◽  
Peter Zeidman ◽  
...  

This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity. This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeling (DCM) to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of Bayesian model reduction to discover the most likely sparse graph (or model) from a parent (e.g., fully connected) graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity) graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM—with functional connectivity priors—is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S5-S5
Author(s):  
Victoria Okuneye ◽  
Brett Clementz ◽  
Elliot Gershon ◽  
Matcheri Keshavan ◽  
Jennifer E McDowell ◽  
...  

Abstract Background Delusions, false beliefs held in the face of disconfirming evidence, are a prevalent and highly distressing feature of psychotic disorders. The neurobiology of delusions remains unknown but recent evidence suggests a role for abnormal prediction error neural signaling. Prediction error is neurocognitive process in which the brain signals the need to update beliefs when presented with information that disconfirms expectations. Task based neuroimaging studies have identified delusional beliefs correlate with altered activation in frontal and subcortical brain regions during prediction error, though such work is limited in scope. In a large sample of transdiagnostic psychotic patients we modeled the resting state effective connectivity of the delusion-associated predication error (D-PE) circuit. Methods Resting state fMRI was obtained from 289 psychotic subjects (schizophrenia, schizoaffective disorder, bipolar disorder with psychotic features) and 219 healthy controls, recruited as part of the multisite Bipolar & Schizophrenia Network on Intermediate Phenotypes (BSNIP1) study. Neuroimaging data were processed using CONN software with strict quality control criteria. Five D-PE regions of interest (ROIs) were created based on peak coordinates from published task-based prediction error fMRI studies: right Dorsolateral Prefrontal Cortex [r DLPFC], r Ventrolateral Prefrontal Cortex [r VLPFC], r Caudate, l Caudate and l Midbrain. In each subject the first eigenvariate was extracted from the rs-fMRI timeseries of each D-PE ROI. Spectral Dynamic Causal Modeling (spDCM) was performed on a fully connected model of the 5 ROIs. Parameters for the full model were fit using Parameter Empirical Bayes (PEB) and then passed to the group level where they were reduced using Bayesian Model Averaging (BMA). The association of effective connectivity with current delusional severity was tested using PEB-BMA controlling for antipsychotic medication, sex, age and scanner site. Significant effective connectivity was identified as parameters with free energy evidence greater than 95% probability. Additionally, we assessed the effective connectivity differences of this circuit between psychotic probands and healthy controls. Results Greater delusional severity was significantly associated with inhibition of the r Caudate by the r VLPFC, excitation of the r DLPFC by the l Caudate, and decreased self-inhibition of the r VLPFC and r DLPFC. Effective connectivity of the D-PE network in psychotic probands compared to healthy controls was associated with inhibition of the r Caudate by the r VLPFC, the r DLPFC by the l Midbrain, the l Midbrain by the r Caudate, and decreased self-inhibition of the r Caudate, r VLPFC, and r DLPFC. Discussion We found that resting state effective connectivity of the prediction error circuit is disrupted in psychotic subjects experiencing delusions. Specifically, delusion severity was associated with both increased bottom-up and decreased top-down frontostriatal connectivity along with greater disinhibition of the r VLPFC and r DLPFC. These effective connectivity results provide novel insight into the causal paths which may underlie delusion neural circuitry. This provides further evidence that dysconnectivity of prediction error system is a biomarker of delusions in psychosis. Furthermore, these transdiagnostic results implicate frontostriatal dysconnectivity as common neuropathology in delusions.


2020 ◽  
Author(s):  
Roberto Limongi ◽  
Michael Mackinley ◽  
Kara Dempster ◽  
Ali R. Khan ◽  
Joseph S. Gati ◽  
...  

AbstractRepetitive transcranial magnetic stimulation (rTMS), when applied to left dorsolateral prefrontal cortex (LDLPFC), reduces negative symptoms of schizophrenia, but has no effect on positive symptoms. In a small number of cases, it appears to worsen the severity of positive symptoms. It has been hypothesized that high frequency rTMS of the LDLPFC might increase the dopaminergic neurotransmission by driving the activity of the left striatum in the basal ganglia (LSTR)—increasing striatal dopaminergic activity. This hypothesis relies on the assumption that either the frontal-striatal connection or the intrinsic frontal and/or striatal connections covary with the severity of positive symptoms. The current work aimed to evaluate this assumption by studying the association between positive and negative symptoms severity and the effective connectivity within the frontal and striatal network using dynamic causal modeling (DCM) of ultra-high field (7 Tesla) resting state fMRI in a sample of 19 first episode psychosis (FEP) subjects. We found that of all core symptoms of schizophrenia, only delusions are strongly associated with the fronto striatal circuitry. Stronger intrinsic inhibitory tone of LDLPFC and LSTR, as well as a pronounced backward inhibition of the LDLPFC on the LSTR related to the severity of delusions. We interpret that an increase in striatal dopaminergic tone that underlies delusional symptoms, is likely associated with increased prefrontal inhibitory tone, strengthening the frontostriatal ‘brake’. Furthermore, based on our model, we propose that lessening of positive symptoms could be achieved by means of continuous theta-burst or low frequency (1Hz) rTMS of the prefrontal area.


IRBM ◽  
2021 ◽  
Author(s):  
Z. Wu ◽  
X. Chen ◽  
M. Gao ◽  
M. Hong ◽  
Z. He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document