scholarly journals Virtual Rehabilitation of the Paretic Hand and Arm in Persons With Stroke: Translation From Laboratory to Rehabilitation Centers and the Patient's Home

2021 ◽  
Vol 12 ◽  
Author(s):  
Gerard Fluet ◽  
Qinyin Qiu ◽  
Jigna Patel ◽  
Ashley Mont ◽  
Amanda Cronce ◽  
...  

The anatomical and physiological heterogeneity of strokes and persons with stroke, along with the complexity of normal upper extremity movement make the possibility that any single treatment approach will become the definitive solution for all persons with upper extremity hemiparesis due to stroke unlikely. This situation and the non-inferiority level outcomes identified by many studies of virtual rehabilitation are considered by some to indicate that it is time to consider other treatment modalities. Our group, among others, has endeavored to build on the initial positive outcomes in studies of virtual rehabilitation by identifying patient populations, treatment settings and training schedules that will best leverage virtual rehabilitation's strengths. We feel that data generated by our lab and others suggest that (1) persons with stroke may adapt to virtual rehabilitation of hand function differently based on their level of impairment and stage of recovery and (2) that less expensive, more accessible home based equipment seems to be an effective alternative to clinic based treatment that justifies continued optimism and study.

Author(s):  
Qinyin Qiu ◽  
Amanda Cronce ◽  
Jigna Patel ◽  
Gerard G. Fluet ◽  
Ashley J. Mont ◽  
...  

Abstract Background After stroke, sustained hand rehabilitation training is required for continuous improvement and maintenance of distal function. Methods In this paper, we present a system designed and implemented in our lab: the Home based Virtual Rehabilitation System (HoVRS). Fifteen subjects with chronic stroke were recruited to test the feasibility of the system as well as to refine the design and training protocol to prepare for a future efficacy study. HoVRS was placed in subjects’ homes, and subjects were asked to use the system at least 15 min every weekday for 3 months (12 weeks) with limited technical support and remote clinical monitoring. Results All subjects completed the study without any adverse events. Subjects on average spent 13.5 h using the system. Clinical and kinematic data were collected pre and post study in the subject’s home. Subjects demonstrated a mean increase of 5.2 (SEM = 0.69) on the Upper Extremity Fugl-Meyer Assessment (UEFMA). They also demonstrated improvements in six measurements of hand kinematics. In addition, a combination of these kinematic measures was able to predict a substantial portion of the variability in the subjects’ UEFMA score. Conclusion Persons with chronic stroke were able to use the system safely and productively with minimal supervision resulting in measurable improvements in upper extremity function.


2020 ◽  
Author(s):  
Qinyin Qiu ◽  
Amanda Cronce ◽  
Jigna Patel ◽  
Gerard G Fluet ◽  
Ashley Mont ◽  
...  

Abstract Background: After stroke, sustained hand rehabilitation training is required for continuous improvement and maintenance of distal function. Methods: In this paper, we present a system designed and implemented in our lab: the Home based Virtual Rehabilitation System (HoVRS). Fifteen subjects with chronic stroke were recruited to test the feasibility of the system as well as to refine the design and training protocol to prepare for a future efficacy study. HoVRS was placed in subjects’ homes, and subjects were asked to use the system at least 15 minutes every weekday for 3 months (12 weeks) with limited technical support and remote clinical monitoring. Results: All patients completed the study without any adverse events. Subjects on average spent 13.5 hours using the system. Clinical and kinematic data were collected pre and post study. The whole group improved on the Fugl-Meyer (FM) assessment and on six kinematic measurements. In addition, a combination of these kinematic measures was able to predict a substantial portion of subjects’ FM scores. Conclusion: The outcomes of this pilot study warrant further investigation of the system’s ability to promote recovery of hand function in subacute and chronic stroke.


2020 ◽  
Author(s):  
Qinyin Qiu ◽  
Amanda Cronce ◽  
Jigna Patel ◽  
Gerard G Fluet ◽  
Ashley Mont ◽  
...  

Abstract Background: After stroke, sustained hand rehabilitation training is required for continuous improvement and maintenance of distal function. Methods: In this paper, we present a system designed and implemented in our lab: the Home based Virtual Rehabilitation System (HoVRS). Fifteen subjects with chronic stroke were recruited to test the feasibility of the system as well as to refine the design and training protocol to prepare for a future efficacy study. HoVRS was placed in subjects’ homes, and subjects were asked to use the system at least 15 minutes every weekday for 3 months (12 weeks) with limited technical support and remote clinical monitoring. Results: All subjects completed the study without any adverse events. Subjects on average spent 13.5 hours using the system. Clinical and kinematic data were collected pre and post study in the subject’s home. Subjects demonstrated a mean increase of 5.2 (SEM=0.69) on the Upper Extremity Fugl-Meyer Assessment (UEFMA). They also demonstrated improvements in six measurements of hand kinematics. In addition, a combination of these kinematic measures was able to predict a substantial portion of the variability in the subjects’ UEFMA score. Conclusion: Persons with chronic stroke were able to use the system safely and productively with minimal supervision resulting in measurable improvements in upper extremity function.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Adam MacLellan ◽  
Catherine Legault ◽  
Alay Parikh ◽  
Leonel Lugo ◽  
Stephanie Kemp ◽  
...  

Background: Stroke is the leading cause of disability worldwide, with many stroke survivors having persistent upper limb functional impairment. Aside from therapist-directed rehabilitation, few efficacious recovery tools are available for use by stroke survivors in their own home. Game-based virtual reality systems have already shown promising results in therapist-supervised settings and may be suitable for home-based use. Objective: We aimed to assess the feasibility of unsupervised home-based use of a virtual reality device for hand rehabilitation in stroke survivors. Methodology: Twenty subacute/chronic stroke patients with upper extremity impairment were enrolled in this prospective single-arm study. Participants were instructed to use the Neofect Smart Glove 5 days per week for 8 weeks, in single sessions of 50 minutes or two 25-minute sessions daily. We measured (1) compliance to prescribed rehabilitation dose, (2) patient impression of the intervention, and (3) efficacy measures including the upper extremity Fugl-Meyer (UE-FM), the Jebsen-Taylor hand function test (JTHFT) and the Stroke Impact Scale (SIS). Results: Seven subjects (35%) met target compliance of 40 days use, and 6 subjects (30%) used the device for 20-39 days; there were no age or gender differences in use. Subjective patient experience was favorable, with ninety percent of subjects reporting satisfaction with their overall experience, and 80% reporting perceived improvement in hand function (figure 1). There was a mean improvement of 26.6±48.8 seconds in the JTHFT ( p =0.03) and 16.1±15.3 points in the domain of the SIS that assesses hand function ( p <0.01). There was a trend towards improvement in the UE-FM (2.2±5.5 points, p =0.10). Conclusions: A novel virtual reality gaming device is suitable for unsupervised use in stroke patients and may improve hand/arm function in subacute/chronic stroke patients. A large-scale randomized controlled trial is needed to confirm these results.


2017 ◽  
Vol 3 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ligia C. S. Fonseca ◽  
Annika K. Nelke ◽  
Jörg Bahm ◽  
Catherine Disselhorst-Klug

Abstract:Coping strategies of patients with obstetric brachial plexus palsy (OBPP) are highly individual. Up to now, individual movement performance is assessed by visual observations of physicians or therapists - a procedure, which is highly subjective and lacks objective data. However, objective data about the individual movement performance are the key to evidence-based and individualized treatment. In this paper, a new approach is presented, which provides objective information about the upper extremity movement performance of patients with OBPP. The approach is based on the use of accelerometers in combination with a classification procedure. The movement performance of 10 healthy volunteers and 41 patients with OBPP has been evaluated by experienced physiotherapists and has been assigned to one of 4 categories representing the Mallet Scale (MS) IV to I. Three triaxial-accelerometers were placed at chest, upper arm and wrist of the affected side of the patient. Acceleration signals have been recorded during repetitive movements with relevance regarding daily life. Here, especially the results from the “hand to mouth” task are presented. From the 9 recorded acceleration signals 13 relevant features were extracted. For each of the 13 features 4 thresholds have been determined distinguishing best between the 4 patient categories of the MS and the healthy subjects. With respect to the thresholds each feature value has been assigned to the discrete numbers 0, 1, 2, 3 or 4. Afterwards, each discrete number has been weighted by a factor regarding the correlation between the feature’s value and the MS score. The resulting weighted discrete numbers of all 13 features have been added resulting in a score, which quantifies the individual upper extremity movement performance. Based on this score the movement performance of each patient has been assigned to the classes “very good”, “good”, “regular” and “bad”. All movements of the 10 healthy volunteers were classified as “very good”. The movement performance of two patients MS IV were classified as “very good” as well and the movements of the other 16 patients as “good”. The movements of the entire group of MS III patients fell into the class “regular”. Just one MS II patient was assigned to the class “regular” while the others were classified as “bad”. It was not possible to classify the movements of MS I patients. This was mainly due to the fact that none of these patients MS I was able to complete the task successfully. The developed approach demonstrated its ability to quantify the movement performance of upper extremity movements based on accelerometers. This provides an easy to use tool to assess patient’s movement strategies during daily tasks for diagnosis and rehabilitation.


2009 ◽  
Vol 3 (4) ◽  
Author(s):  
William K. Durfee ◽  
Samantha A. Weinstein ◽  
Ela Bhatt ◽  
Ashima Nagpal ◽  
James R. Carey

Current theories of stroke rehabilitation point toward paradigms of intense concentrated use of the afflicted limb as a means for motor program reorganization and partial function restoration. A home-based system for stroke rehabilitation that trains recovery of hand function by a treatment of concentrated movement was developed and tested. A wearable goniometer measured finger and wrist motions in both hands. An interface box transmitted sensor measurements in real-time to a laptop computer. Stroke patients used joint motion to control the screen cursor in a one-dimensional tracking task for several hours a day over the course of 10–14 days to complete a treatment of 1800 tracking trials. A telemonitoring component enabled a therapist to check in with the patient by video phone to monitor progress, to motivate the patient, and to upload tracking data to a central file server. The system was designed for use at home by patients with no computer skills. The system was placed in the homes of 20 subjects with chronic stroke and impaired finger motion, ranging from 2–305 mi away from the clinic, plus one that was a distance of 1057 miles. Fifteen subjects installed the system at home themselves after instruction in the clinic, while nine required a home visit to install. Three required follow-up visits to fix equipment. A post-treatment telephone survey was conducted to assess ease of use and most responded that the system was easy to use. Functional improvements were seen in the subjects enrolled in the formal treatment study, although the treatment period was too short to trigger cortical reorganization. We conclude that the system is feasible for home use and that tracking training has promise as a treatment paradigm.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Katharina Stibrant Sunnerhagen ◽  
Hanna C Persson

Introduction Reduced upper extremity function after stroke has previously been reported in 70-80% of patients with stroke in the acute stage and is one of the most common impairments after acute stroke impaired motor function, both in upper and lower extremity, influence the stroke unit care and planning of the rehabilitation, partly due to the economic costs. There is limited information in upper extremity function within the first days after a stroke. Prior studies include either both first and recurrent stroke or only one type of stroke. Objectives To investigate the frequency impaired arm and hand function in an unselected group of patients with first occasion of stroke. Method All patients at a stroke unit at Sahlgrenska University Hospital were assessed during 18 months. From the hospital records, the patients were identified, the patient charts were read and first stroke diagnosis was confirmed (by either imaging or clinical assessment). Impaired upper extremity function was defined in the following manner: assessed with the Modified Motor Assessment Scale (M-MAS UAS -95) by physiotherapist working at the stroke unit within 72 hours after stroke onset or if this was found in the patients chart, other standardized assessments of upper extremity function performed by the physical therapist, the occupational therapist or the physicians on the ward. Results During the study period 984 patients with first ever stroke (438 women 44.5%) were admitted to the stroke unit. A total of 213 patients were not at the stroke unit within 72 hours after onset and therefore excluded; 90 patients had unclear stroke onset time, 49 patients were located at another ward, 36 patients were in the intensive care unit, 25 in other hospitals in Sweden and 12 patients were hospitalized in another country. There were 771 patients over 18 years old at the stroke unit within 72 hours after stroke onset. Of these 56 patients (7.3%), were not living in the catchment area and therefore excluded. Of the 715 patients living in the geographical catchment area, 58, (8.1%) hade other upper extremity injury prior the stroke onset. Of the remaining first ever stroke patients (n=657), 311 patients (47.3%) hade impaired arm and hand function within 72 hours after stroke onset. Conclusion The frequency of impaired upper extremity function in this unselected population of first occasion of stroke is lower than previously reported. The Copenhagen stroke study noted 69 % impaired at admission and 43 % at one week. This indicates that today’s stroke patients present less frequent with impaired motor function in the upper extremity. However, they may have difficulties in functional activities which may influence content of rehabilitation process.


2021 ◽  
pp. 1-7
Author(s):  
Allan D. Levi ◽  
Jan M. Schwab

The corticospinal tract (CST) is the preeminent voluntary motor pathway that controls human movements. Consequently, long-standing interest has focused on CST location and function in order to understand both loss and recovery of neurological function after incomplete cervical spinal cord injury, such as traumatic central cord syndrome. The hallmark clinical finding is paresis of the hands and upper-extremity function with retention of lower-extremity movements, which has been attributed to injury and the sparing of specific CST fibers. In contrast to historical concepts that proposed somatotopic (laminar) CST organization, the current narrative summarizes the accumulated evidence that 1) there is no somatotopic organization of the corticospinal tract within the spinal cord in humans and 2) the CST is critically important for hand function. The evidence includes data from 1) tract-tracing studies of the central nervous system and in vivo MRI studies of both humans and nonhuman primates, 2) selective ablative studies of the CST in primates, 3) evolutionary assessments of the CST in mammals, and 4) neuropathological examinations of patients after incomplete cervical spinal cord injury involving the CST and prominent arm and hand dysfunction. Acute traumatic central cord syndrome is characterized by prominent upper-extremity dysfunction, which has been falsely predicated on pinpoint injury to an assumed CST layer that specifically innervates the hand muscles. Given the evidence surveyed herein, the pathophysiological mechanism is most likely related to diffuse injury to the CST that plays a critically important role in hand function.


2021 ◽  
pp. 106648072110618
Author(s):  
Janelle M. Cox

Home-based counseling is an emerging modality of providing mental health counseling services to clients across the lifespan. However, minimal graduate training programs and home-based agencies provide training and preparation for professional counselors. In addition, educational and professional requirements are currently ill defined. A nonexperimental pilot survey exploring home-based professional counselors work-based, and clinical supervision and training patterns was conducted. Results suggest home-based professional counselors serve diverse populations and have limited training regarding home-based competencies. Findings from the study are presented. Implications for training and practice for home-based counselors are discussed.


Sign in / Sign up

Export Citation Format

Share Document