scholarly journals CSF in Epileptic Prodromal Alzheimer's Disease: No Diagnostic Contribution but a Pathophysiological One

2021 ◽  
Vol 12 ◽  
Author(s):  
Benjamin Cretin ◽  
Olivier Bousiges ◽  
Geoffroy Hautecloque ◽  
Nathalie Philippi ◽  
Frederic Blanc ◽  
...  

Objective: To study whether cerebrospinal fluid (CSF) analysis may serve as a diagnostic test for the screening of epilepsy in sporadic prodromal Alzheimer's disease (AD).Methods: A total of 29 patients with epileptic prodromal sporadic AD patients (epADs) were included and were retrospectively compared with 38 non-epileptic prodromal AD patients (nepADs) for demographics, clinical features, Mini-Mental Status Examination (MMSE) results, CSF biomarkers, and electro-radiological features.Results: Our study did not show any significant differences in CSF biomarkers regarding neurodegeneration, albumin levels, and inflammation between epADs and nepADs. The epADs were significantly older at diagnosis (p = 0.001), more hypertensive (p = 0.01), and displayed larger white matter hyperintensities on brain magnetic resonance imaging (MRI; p = 0.05). There was a significant correlation between the CSF Aβ-42 and Aβ-40 levels with interictal epileptiform discharges and delta slowing on EEGs recordings, respectively (p = 0.03).Conclusions: Our study suggests that CSF may not serve as a surrogate marker of epilepsy in prodromal AD and cannot circumvent the operator-dependent and time-consuming interpretation of EEG recordings. In humans, AD-related epileptogenesis appears to involve the Aβ peptides but likely also additional non-amyloid factors such as small-vessel disease (i.e., white matter hyperintensities).

2020 ◽  
Vol 16 (S4) ◽  
Author(s):  
Eske Christiane Gertje ◽  
Shorena Janelidze ◽  
Danielle van Westen ◽  
Sebastian Palmqvist ◽  
Oskar Hansson ◽  
...  

2021 ◽  
Vol 79 (1) ◽  
pp. 163-175
Author(s):  
Linda J.C. van Waalwijk van Doorn ◽  
Mohsen Ghafoorian ◽  
Esther M.C. van Leijsen ◽  
Jurgen A.H.R. Claassen ◽  
Andrea Arighi ◽  
...  

Background: The cerebrospinal fluid (CSF) biomarkers amyloid-β 1–42 (Aβ42), total and phosphorylated tau (t-tau, p-tau) are increasingly used to assist in the clinical diagnosis of Alzheimer’s disease (AD). However, CSF biomarker levels can be affected by confounding factors. Objective: To investigate the association of white matter hyperintensities (WMHs) present in the brain with AD CSF biomarker levels. Methods: We included CSF biomarker and magnetic resonance imaging (MRI) data of 172 subjects (52 controls, 72 mild cognitive impairment (MCI), and 48 AD patients) from 9 European Memory Clinics. A computer aided detection system for standardized automated segmentation of WMHs was used on MRI scans to determine WMH volumes. Association of WMH volume with AD CSF biomarkers was determined using linear regression analysis. Results: A small, negative association of CSF Aβ42, but not p-tau and t-tau, levels with WMH volume was observed in the AD (r2 = 0.084, p = 0.046), but not the MCI and control groups, which was slightly increased when including the distance of WMHs to the ventricles in the analysis (r2 = 0.105, p = 0.025). Three global patterns of WMH distribution, either with 1) a low, 2) a peak close to the ventricles, or 3) a high, broadly-distributed WMH volume could be observed in brains of subjects in each diagnostic group. Conclusion: Despite an association of WMH volume with CSF Aβ42 levels in AD patients, the occurrence of WMHs is not accompanied by excess release of cellular proteins in the CSF, suggesting that WMHs are no major confounder for AD CSF biomarker assessment.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Malo Gaubert ◽  
Catharina Lange ◽  
Antoine Garnier-Crussard ◽  
Theresa Köbe ◽  
Salma Bougacha ◽  
...  

Abstract Background White matter hyperintensities (WMH) are frequently found in Alzheimer’s disease (AD). Commonly considered as a marker of cerebrovascular disease, regional WMH may be related to pathological hallmarks of AD, including beta-amyloid (Aβ) plaques and neurodegeneration. The aim of this study was to examine the regional distribution of WMH associated with Aβ burden, glucose hypometabolism, and gray matter volume reduction. Methods In a total of 155 participants (IMAP+ cohort) across the cognitive continuum from normal cognition to AD dementia, FLAIR MRI, AV45-PET, FDG-PET, and T1 MRI were acquired. WMH were automatically segmented from FLAIR images. Mean levels of neocortical Aβ deposition (AV45-PET), temporo-parietal glucose metabolism (FDG-PET), and medial-temporal gray matter volume (GMV) were extracted from processed images using established AD meta-signature templates. Associations between AD brain biomarkers and WMH, as assessed in region-of-interest and voxel-wise, were examined, adjusting for age, sex, education, and systolic blood pressure. Results There were no significant associations between global Aβ burden and region-specific WMH. Voxel-wise WMH in the splenium of the corpus callosum correlated with greater Aβ deposition at a more liberal threshold. Region- and voxel-based WMH in the posterior corpus callosum, along with parietal, occipital, and frontal areas, were associated with lower temporo-parietal glucose metabolism. Similarly, lower medial-temporal GMV correlated with WMH in the posterior corpus callosum in addition to parietal, occipital, and fontal areas. Conclusions This study demonstrates that local white matter damage is correlated with multimodal brain biomarkers of AD. Our results highlight modality-specific topographic patterns of WMH, which converged in the posterior white matter. Overall, these cross-sectional findings corroborate associations of regional WMH with AD-typical Aß deposition and neurodegeneration.


2021 ◽  
pp. 1-11
Author(s):  
Fennie Choy Chin Wong ◽  
Seyed Ehsan Saffari ◽  
Chathuri Yatawara ◽  
Kok Pin Ng ◽  
Nagaendran Kandiah ◽  
...  

Background: The associations between small vessel disease (SVD) and cerebrospinal amyloid-β1-42 (Aβ1-42) pathology have not been well-elucidated. Objective: Baseline (BL) white matter hyperintensities (WMH) were examined for associations with month-24 (M24) and longitudinal Aβ1-42 change in cognitively normal (CN) subjects. The interaction of WMH and Aβ1-42 on memory and executive function were also examined. Methods: This study included 72 subjects from the Alzheimer’s Disease Neuroimaging Initiative. Multivariable linear regression models evaluated associations between baseline WMH/intracranial volume ratio, M24 and change in Aβ1-42 over two years. Linear mixed effects models evaluated interactions between BL WMH/ICV and Aβ1-42 on memory and executive function. Results: Mean age of the subjects (Nmales = 36) = 73.80 years, SD = 6.73; mean education years = 17.1, SD = 2.4. BL WMH was significantly associated with M24 Aβ1-42 (p = 0.008) and two-year change in Aβ1-42 (p = 0.006). Interaction between higher WMH and lower Aβ1-42 at baseline was significantly associated with worse memory at baseline and M24 (p = 0.003). Conclusion: BL WMH was associated with M24 and longitudinal Aβ1-42 change in CN. The interaction between higher WMH and lower Aβ1-42 was associated with poorer memory. Since SVD is associated with longitudinal Aβ1-42 pathology, and the interaction of both factors is linked to poorer cognitive outcomes, the mitigation of SVD may be correlated with reduced amyloid pathology and milder cognitive deterioration in Alzheimer’s disease.


2014 ◽  
Vol 35 (4) ◽  
pp. 769-776 ◽  
Author(s):  
Alex C. Birdsill ◽  
Rebecca L. Koscik ◽  
Erin M. Jonaitis ◽  
Sterling C. Johnson ◽  
Ozioma C. Okonkwo ◽  
...  

2010 ◽  
Vol 53 (5) ◽  
pp. 373-381 ◽  
Author(s):  
Liya Wang ◽  
Felicia C. Goldstein ◽  
Allan I. Levey ◽  
James J. Lah ◽  
Carolyn C. Meltzer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document