scholarly journals Differences Changes in Cerebellar Functional Connectivity Between Mild Cognitive Impairment and Alzheimer's Disease: A Seed-Based Approach

2021 ◽  
Vol 12 ◽  
Author(s):  
Fanyu Tang ◽  
Donglin Zhu ◽  
Wenying Ma ◽  
Qun Yao ◽  
Qian Li ◽  
...  

Background: Recent studies have discovered that functional connections are impaired among patients with Alzheimer's disease (AD), even at the preclinical stage. The cerebellum has been implicated as playing a role in cognitive processes. However, functional connectivity (FC) among cognitive sub-regions of the cerebellum in patients with AD and mild cognitive impairment (MCI) remains to be further elucidated.Objective: Our study aims to investigate the FC changes of the cerebellum among patients with AD and MCI, compared to healthy controls (HC). Additionally, we explored the role of cerebellum FC changes in the cognitive performance of all subjects.Materials: Resting-state functional magnetic resonance imaging (rs-fMRI) data from three different groups (28 AD patients, 26 MCI patients, and 30 HC) was collected. We defined cerebellar crus II and lobule IX as seed regions to assess the intragroup differences of cortico-cerebellar connectivity. Bias correlational analysis was performed to investigate the relationship between changes in FC and neuropsychological performance.Results: Compared to HC, AD patients had decreased FC within the caudate, limbic lobe, medial frontal gyrus (MFG), middle temporal gyrus, superior frontal gyrus, parietal lobe/precuneus, inferior temporal gyrus, and posterior cingulate gyrus. Interestingly, MCI patients demonstrated increased FC within inferior parietal lobe, and MFG, while they had decreased FC in the thalamus, inferior frontal gyrus, and superior frontal gyrus. Further analysis indicated that FC changes between the left crus II and the right thalamus, as well as between left lobule IX and the right parietal lobe, were both associated with cognitive decline in AD. Disrupted FC between left crus II and right thalamus, as well as between left lobule IX and right parietal lobe, was associated with attention deficit among subjects with MCI.Conclusion: These findings indicate that cortico-cerebellar FC in MCI and AD patients was significantly disrupted with different distributions, particularly in the default mode networks (DMN) and fronto-parietal networks (FPN) region. Increased activity within the fronto-parietal areas of MCI patients indicated a possible compensatory role for the cerebellum in cognitive impairment. Therefore, alterations in the cortico-cerebellar FC represent a novel approach for early diagnosis and a potential therapeutic target for early intervention.

2021 ◽  
Author(s):  
Guixia Kang ◽  
Peiqi Luo ◽  
Xin Xu ◽  
Ying Han ◽  
Xuemei Li ◽  
...  

Abstract Objective: To assess the progression of volume changes in hippocampus and its subfields of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI), and to explore the association of the hippocampus and its subfields volumes with cognitive function.Methods: Five groups of participants including 35 normal controls (NC) persons, 30 MCI patients, 30 Mild AD patients, 30 Moderate AD patients and 8 Severe AD patients received structural MRI brain scans. Freesurfer6.0 was used for automatically segmentation of MRI, and the left and right hippocampus were respectively divided into 12 subfields. By statistical analysis, the volumes of hippocampus and its subfields were compared between the five groups, and the correlation of the volumes with Mini-mental State Examination (MMSE) score was analyzed.Result & Conclusion: In the disease, each hippocampal subfield shows an uneven atrophy trajectory; The volumes of the subiculum and presubiculum are significantly different between Mild AD and MCI, which can contribute to the early diagnosis of AD; Parasubiculum is the least sensitive subfield for volume atrophy of AD, while subiculum, presubiculum, CA1, molecular_layer_HP and fimbria show much more significant volume changes. Meanwhile the volumes of these five subfields are positively correlated with MMSE, which may help in stage division of AD; Compared with the right hippocampus, the volume atrophy on the left side is more significantly, and the volumes are more significantly correlated with MMSE, So the left hippocampus and its subfields may provide a higher reference value for the clinical evaluation of AD than the right side.


2020 ◽  
Author(s):  
Diana Wang ◽  
Alexander Belden ◽  
Suzanne Hanser ◽  
Maiya R. Geddes ◽  
Psyche Loui

AbstractMusic-based interventions have become increasingly widely adopted for dementia and related disorders. Previous research shows that music engages reward-related regions through functional connectivity with the auditory system. Here we characterize intrinsic connectivity of the auditory and reward systems in healthy aging, mild cognitive impairment (MCI) - a predementia phase of cognitive dysfunction, and Alzheimer’s disease (AD). Using resting-state fMRI data from the Alzheimer’s Database Neuroimaging Initiative, we tested functional connectivity within and between auditory and reward systems in older adults with MCI, AD, and age-matched healthy controls (N=105). Seed-based correlations were assessed from regions of interest (ROIs) in the auditory network, i.e. anterior superior temporal gyrus (aSTG), posterior superior temporal gyrus (pSTG), Heschl’s Gyrus, and reward network (i.e., nucleus accumbens, caudate, putamen, and orbitofrontal cortex [OFC]). AD individuals were lower in both within-network and between-network functional connectivity in the auditory network and reward networks compared to MCI and healthy controls. Furthermore, graph theory analyses showed that MCI individuals had higher clustering, local efficiency, degrees, and strengths than both AD individuals and healthy controls. Together, the auditory and reward systems show preserved within- and between-network connectivity in MCI relative to AD. These results suggest that music-based interventions have the potential to make an early difference in individuals with MCI, due to the preservation of functional connectivity in reward-related regions and between auditory and reward networks at that initial stage of neurodegeneration.


2020 ◽  
Author(s):  
Ruaridh Clark ◽  
Niia Nikolova ◽  
William J. McGeown ◽  
Malcolm Macdonald

AbstractEigenvector alignment, introduced herein to investigate human brain functional networks, is adapted from methods developed to detect influential nodes and communities in networked systems. It is used to identify differences in the brain networks of subjects with Alzheimer’s disease (AD), amnestic Mild Cognitive Impairment (aMCI) and healthy controls (HC). Well-established methods exist for analysing connectivity networks composed of brain regions, including the widespread use of centrality metrics such as eigenvector centrality. However, these metrics provide only limited information on the relationship between regions, with this understanding often sought by comparing the strength of pairwise functional connectivity. Our holistic approach, eigenvector alignment, considers the impact of all functional connectivity changes before assessing the strength of the functional relationship, i.e. alignment, between any two regions. This is achieved by comparing the placement of regions in a Euclidean space defined by the network’s dominant eigenvectors. Eigenvector alignment recognises the strength of bilateral connectivity in cortical areas of healthy control subjects, but also reveals degradation of this commissural system in those with AD. Surprisingly little structural change is detected for key regions in the Default Mode Network, despite significant declines in the functional connectivity of these regions. In contrast, regions in the auditory cortex display significant alignment changes that begin in aMCI and are the most prominent structural changes for those with AD. Alignment differences between aMCI and AD subjects are detected, including notable changes to the hippocampal regions. These findings suggest eigenvector alignment can play a complementary role, alongside established network analytic approaches, to capture how the brain’s functional networks develop and adapt when challenged by disease processes such as AD.


Sign in / Sign up

Export Citation Format

Share Document