scholarly journals Isolating Discriminant Neural Activity in the Presence of Eye Movements and Concurrent Task Demands

Author(s):  
Jon Touryan ◽  
Vernon J. Lawhern ◽  
Patrick M. Connolly ◽  
Nima Bigdely-Shamlo ◽  
Anthony J. Ries
2004 ◽  
Vol 16 (8) ◽  
pp. 1426-1442 ◽  
Author(s):  
M. J. Taylor ◽  
M. Batty ◽  
R. J. Itier

The understanding of the adult proficiency in recognizing and extracting information from faces is still limited despite the number of studies over the last decade. Our knowledge on the development of these capacities is even more restricted, as only a handful of such studies exist. Here we present a combined reanalysis of four ERP studies in children from 4 to 15 years of age and adults (n = 424, across the studies), which investigated face processing in implicit and explicit tasks. We restricted these analyses to what was common across studies: early ERP components and upright face processing across all four studies and the inversion effect, investigated in three of the studies. These data demonstrated that processing faces implicates very rapid neural activity, even in young children— at the P1 component—with protracted age-related change in both P1 and N170, that were sensitive to the different task demands. Inversion produced latency and amplitude effects on the P1 from the youngest group, but on N170 only starting in mid childhood. These developmental data suggest that there are functionally different sources of the P1 and N170, related to the processing of different aspects of faces.


1987 ◽  
Vol 4 (2) ◽  
pp. 14-19 ◽  
Author(s):  
Carmen C. Moran

Tension (muscle contraction) headache is often associated with high task demands, and relaxation is frequently recommended during daily work activities in many treatment programs. The effect of relaxation on concurrent task performance is assumed to be beneficial, or at worst to have no effect, but this assumption is seldom made explicit. This paper presents results from two experiments which have examined the effects of muscle tension and relaxation on concurrent task performance, in headache-prone and non-headache groups. Results indicated that induced frontalis relaxation did not generally result in optimal task performance; the performance measure affected (accuracy or reaction time) was related to the type of task being performed. Differences between the headache and non-headache subjects were especially related to interactions between task difficulty level and “optimal” level of frontalis tension. Further research is needed to clarify the aspects of performance most affected by variations in frontalis tension and the appropriateness of attempting to relax the frontalis muscle in task situations.


2013 ◽  
Vol 110 (2) ◽  
pp. 334-343 ◽  
Author(s):  
Masayuki Watanabe ◽  
Douglas P. Munoz

Electrical stimulation has been delivered to the basal ganglia (BG) to treat intractable symptoms of a variety of clinical disorders. However, it is still unknown how such treatments improve behavioral symptoms. A difficulty of this problem is that artificial signals created by electrical stimulation interact with intrinsic signals before influencing behavior, thereby making it important to understand how such interactions between artificial and intrinsic signals occur. We addressed this issue by analyzing the effects of electrical stimulation under the following two behavioral conditions that induce different states of intrinsic signals: 1) subjects behave spontaneously without task demands; and 2) subjects perform a behavioral paradigm purposefully. We analyzed saccadic eye movements in monkeys while delivering microstimulation to the head and body of the caudate nucleus, a major input stage of the oculomotor BG. When monkeys generated spontaneous saccades, caudate microstimulation biased saccade vector endpoints toward the contralateral direction of stimulation sites. However, when caudate microstimulation was delivered during a purposive prosaccade (look toward a visual stimulus) or an antisaccade (look away from a stimulus) paradigm, it created overall ipsilateral biases by suppressing contralateral saccades more strongly than ipsilateral saccades. These results suggest that the impact of BG electrical stimulation changes dynamically depending on the state of intrinsic signals that vary under a variety of behavioral demands in everyday life.


2020 ◽  
Author(s):  
Kai Standvoss ◽  
Silvan C. Quax ◽  
Marcel A.J. van Gerven

AbstractAllocating visual attention through saccadic eye movements is a key ability of intelligent agents. Attention is both influenced through bottom-up stimulus properties as well as top-down task demands. The interaction of these two attention mechanisms is not yet fully understood. A parsimonious reconciliation posits that both processes serve the minimization of predictive uncertainty. We propose a recurrent generative neural network model that predicts a visual scene based on foveated glimpses. The model shifts its attention in order to minimize the uncertainty in its predictions. We show that the proposed model produces naturalistic eye movements focusing on informative stimulus regions. Introducing additional tasks modulates the saccade patterns towards task-relevant stimulus regions. The model’s saccade characteristics correspond well with previous experimental data in humans, providing evidence that uncertainty minimization could be a fundamental mechanisms for the allocation of visual attention.


Author(s):  
Richard Johnston ◽  
Adam C. Snyder ◽  
Sanjeev B. Khanna ◽  
Deepa Issar ◽  
Matthew A. Smith

SummaryDecades of research have shown that global brain states such as arousal can be indexed by measuring the properties of the eyes. Neural signals from individual neurons, populations of neurons, and field potentials measured throughout much of the brain have been associated with the size of the pupil, small fixational eye movements, and vigor in saccadic eye movements. However, precisely because the eyes have been associated with modulation of neural activity across the brain, and many different kinds of measurements of the eyes have been made across studies, it has been difficult to clearly isolate how internal states affect the behavior of the eyes, and vice versa. Recent work in our laboratory identified a latent dimension of neural activity in macaque visual cortex on the timescale of minutes to tens of minutes. This ‘slow drift’ was associated with perceptual performance on an orientation-change detection task, as well as neural activity in visual and prefrontal cortex (PFC), suggesting it might reflect a shift in a global brain state. This motivated us to ask if the neural signature of this internal state is correlated with the action of the eyes in different behavioral tasks. We recorded from visual cortex (V4) while monkeys performed a change detection task, and the prefrontal cortex, while they performed a memory-guided saccade task. On both tasks, slow drift was associated with a pattern that is indicative of changes in arousal level over time. When pupil size was large, and the subjects were in a heighted state of arousal, microsaccade rate and reaction time decreased while saccade velocity increased. These results show that the action of the eyes is associated with a dominant mode of neural activity that is pervasive and task-independent, and can be accessed in the population activity of neurons across the cortex.


1987 ◽  
Vol 58 (2) ◽  
pp. 359-378 ◽  
Author(s):  
H. Noda ◽  
T. Fujikado

1. Oculomotor responses to microstimulation of the cerebellar vermis of macaque monkeys were investigated by using a magnetic search-coil method. 2. The oculomotor responses were conjugate eye movements with an ipsilateral horizontal component. Analyses of amplitude-velocity and amplitude-duration relationships revealed that the peak eye velocities and the durations of the responses were comparable to those of saccadic eye movements. 3. Systematic mapping with microstimulation disclosed that the region in the cerebellar vermis that yielded saccades with weak stimulus currents was confined to lobule VII in five monkeys but included a part of folium VIc in the other four monkeys. This region coincided with the distribution of the saccade-related neural activity observed in the present study and also corresponded to the vermal folia from which we recorded the burst mossy-fiber units and the oculomotor Purkinje cell activity. 4. The oculomotor vermis was defined as that region of the cerebellar vermis that met the following criteria: 1) saccades were evoked with low-intensity microstimulation (with currents less than 10 microA); 2) vigorous saccade-related neural activity was present; and 3) Purkinje cell discharges were modulated with eye movements. The oculomotor vermis was more circumscribed and located more posteriorly than the vermal cortex explored in previous microstimulation experiments on monkeys. 5. Microstimulation of the oculomotor vermis evoked more or less curved saccades in oblique directions. The horizontal and vertical components were not simultaneous in some saccades: the shorter component started later or ended earlier than the other component and their peak velocities were not always synchronous. 6. The amplitude of the saccade depended on stimulus parameters; microstimulation with 10-12 pulses within a period of approximately 20 ms (500-600 Hz) was shown to be optimal. When the pulses were applied to the white matter or to the granular layer, a stimulus current of 10 microA was sufficient to evoke saccades. When the molecular layer was stimulated, evoked saccades were smaller and frequently curved, and an increase in the stimulus current changed either the initial direction or the trajectory of the saccade. 7. When the stimulus current was carefully controlled and maintained near the threshold, the direction of the saccade evoked from the oculomotor vermis was topographically organized.(ABSTRACT TRUNCATED AT 400 WORDS)


NeuroImage ◽  
2005 ◽  
Vol 25 (2) ◽  
pp. 511-519 ◽  
Author(s):  
E. Darcy Burgund ◽  
Heather M. Lugar ◽  
Bradley L. Schlaggar ◽  
Steven E. Petersen

2018 ◽  
Vol 71 (1) ◽  
pp. 198-210 ◽  
Author(s):  
Anna Fiona Weiss ◽  
Franziska Kretzschmar ◽  
Matthias Schlesewsky ◽  
Ina Bornkessel-Schlesewsky ◽  
Adrian Staub

Several studies have examined effects of explicit task demands on eye movements in reading. However, there is relatively little prior research investigating the influence of implicit processing demands. In this study, processing demands were manipulated by means of a between-subject manipulation of comprehension question difficulty. Consistent with previous results from Wotschack and Kliegl, the question difficulty manipulation influenced the probability of regressing from late in sentences and re-reading earlier regions; readers who expected difficult comprehension questions were more likely to re-read. However, this manipulation had no reliable influence on eye movements during first-pass reading of earlier sentence regions. Moreover, for the subset of sentences that contained a plausibility manipulation, the disruption induced by implausibility was not modulated by the question manipulation. We interpret these results as suggesting that comprehension demands influence reading behavior primarily by modulating a criterion for comprehension that readers apply after completing first-pass processing.


Sign in / Sign up

Export Citation Format

Share Document