scholarly journals Individual Differences in the Accuracy of Judgments of Learning Are Related to the Gray Matter Volume and Functional Connectivity of the Left Mid-Insula

Author(s):  
Xiao Hu ◽  
Zhaomin Liu ◽  
Wen Chen ◽  
Jun Zheng ◽  
Ningxin Su ◽  
...  
2018 ◽  
Vol 13 (5) ◽  
pp. 1468-1473 ◽  
Author(s):  
Xiaowan Wang ◽  
Chris Baeken ◽  
Mengxia Fang ◽  
Jiang Qiu ◽  
Hong Chen ◽  
...  

2015 ◽  
Vol 45 (12) ◽  
pp. 2533-2543 ◽  
Author(s):  
A. Favaro ◽  
E. Tenconi ◽  
D. Degortes ◽  
R. Manara ◽  
P. Santonastaso

BackgroundPrenatal stress is hypothesized to have a disruptive impact on neurodevelopmental trajectories, but few human studies have been conducted on the long-term neural correlates of prenatal exposure to stress. The aim of this study was to explore the relationship between prenatal stress exposure and gray-matter volume and resting-state functional connectivity in a sample of 35 healthy women aged 14–40 years.MethodVoxel-based morphometry and functional connectivity analyses were performed on the whole brain and in specific regions of interest (hippocampus and amygdala). Data about prenatal/postnatal stress and obstetric complications were obtained by interviewing participants and their mothers, and reviewing obstetric records.ResultsHigher prenatal stress was associated with decreased gray-matter volume in the left medial temporal lobe (MTL) and both amygdalae, but not the hippocampus. Variance in gray-matter volume of these brain areas significantly correlated with depressive symptoms, after statistically adjusting for the effects of age, postnatal stress and obstetric complications. Prenatal stress showed a positive linear relationship with functional connectivity between the left MTL and the pregenual cortex. Moreover, connectivity between the left MTL and the left medial-orbitofrontal cortex partially explained variance in the depressive symptoms of offspring.ConclusionsIn young women, exposure to prenatal stress showed a relationship with the morphometry and functional connectivity of brain areas involved in the pathophysiology of depressive disorders. These data provide evidence in favor of the hypothesis that early exposure to stress affects brain development and identified the MTL and amygdalae as possible targets of such exposure.


Author(s):  
Yue Cui ◽  
Yang Liu ◽  
Caishui Yang ◽  
Chunlei Cui ◽  
Donglai Jing ◽  
...  

AbstractSimultanagnosia is a common symptom of posterior cortical atrophy, and its association with brain structural and functional changes remains unclear. In our study, 18 posterior cortical atrophy patients with simultanagnosia, 29 patients with Alzheimer’s disease and 20 cognitively normal controls were recruited and subjected to full neuropsychological evaluation, including simultanagnosia tests, and structural and resting-state functional MRI. The gray matter volume was assessed by voxel-based morphometry, while the intrinsic functional connectivity was evaluated using the reduced gray matter volume regions of interest as the seed. In contrast to the patients with Alzheimer’s disease, those with posterior cortical atrophy showed the following: (1) markedly lower simultanagnosia test scores, (2) an altered regional gray matter volume of the left middle occipital gyrus and ventral occipital areas, and (3) lowered intrinsic functional connectivity with the left middle occipital gyrus, left lingual gyrus and right middle occipital gyrus separately. Additionally, the gray matter volume of the left middle occipital gyrus and left inferior occipital gyrus were each correlated with simultanagnosia in posterior cortical atrophy patients. The intrinsic functional connectivity of the left middle occipital gyrus with the right superior occipital gyrus and that of the right middle occipital gyrus with the left superior parietal gyrus were also correlated with simultanagnosia in posterior cortical atrophy patients. In summary, this study indicated that simultanagnosia is associated with gray matter reductions and decreased functional connectivity in the left middle occipital gyrus and the left inferior occipital gyrus in patients with posterior cortical atrophy.


Sign in / Sign up

Export Citation Format

Share Document