scholarly journals White Matter Microstructure Alterations in Patients With Spinal Cord Injury Assessed by Diffusion Tensor Imaging

Author(s):  
Yun Guo ◽  
Feng Gao ◽  
Yaou Liu ◽  
Hua Guo ◽  
Weiyong Yu ◽  
...  
2007 ◽  
Vol 58 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Joong Hee Kim ◽  
David N. Loy ◽  
Hsiao-Fang Liang ◽  
Kathryn Trinkaus ◽  
Robert E. Schmidt ◽  
...  

2020 ◽  
Author(s):  
Beike Chen ◽  
Qiang Tan ◽  
Weikang Zhao ◽  
Qiming Yang ◽  
Hongyan Zhang ◽  
...  

Abstract Background: Diffusion tensor imaging (DTI) was an effective method to identify subtle changes to normal‐appearing white matter (WM). Here we analyzed the DTI data with other examinations, including motor evoked potentials (MEPs), histopathological images, and behavioral results, to reflect the lesion development in different degrees of spinal cord injury (SCI) in acute and subacute stage. Method: Except for 2 Sprague -Dawley rats died from anesthesia accident, the rest 42 female rats were randomized into 3 groups: control (n=6), moderate group (n=18), and severe group (n=18). Moderate (a 50-g aneurysm clip with 0.4-mm thickness spacer) or severe (a 50-g aneurysm clip with no spacer) contusion SCI at T8 vertebrae were induced. Then the electrophysiological assessments via MEPs, behavioral deterioration via the Basso, Beattie, and Bresnaha (BBB) scores, DTI data, and histopathology examination were analyzed. Results: In this study, we found that the damage of WM myelin, MEPs amplitude, BBB scores and the decreases in values of fractional anisotropy (FA) and axial diffusivity (AD) were more obvious in the severe injury group than that of the moderate group. Additionally, the FA and AD values could identify the extent of SCI in subacute and early acute SCI respectively, reflected in the robust correlations with MEPs and BBB scores. While the values of radial diffusivity (RD) showed no significant changes. Conclusions: Our data confirmed that DTI was a valuable in ex vivo imaging tool to identify damaged white matter tracts after graded SCI in rat, which may provide useful information for the early identification of the severity of SCI.


2020 ◽  
Author(s):  
Beike Chen ◽  
Qiang Tan ◽  
Weikang Zhao ◽  
Qiming Yang ◽  
Hongyan Zhang ◽  
...  

Abstract Background: Diffusion tensor imaging (DTI) is an effective method to identify subtle changes to normal‐appearing white matter (WM). Here we analyzed the DTI data with other examinations, including motor evoked potentials (MEPs), histopathological images, and behavioral results, to reflect the lesion development in different degrees of spinal cord injury (SCI) in acute and subacute stages.Method: Except for 2 Sprague -Dawley rats which died from the anesthesia accident, the rest 42 female rats were randomized into 3 groups: control group (n=6), moderate group (n=18), and severe group (n=18). Moderate (a 50-g aneurysm clip with 0.4-mm thickness spacer) or severe (a 50-g aneurysm clip with no spacer) contusion SCI at T8 vertebrae was induced. Then the electrophysiological assessments via MEPs, behavioral deterioration via the Basso, Beattie, and Bresnaha (BBB) scores, DTI data, and histopathology examination were analyzed. Results: In this study, we found that the damage of WM myelin, MEPs amplitude, BBB scores and the decreases in the values of fractional anisotropy (FA) and axial diffusivity (AD) were more obvious in the severe injury group than those of the moderate group. Additionally, the FA and AD values could identify the extent of SCI in subacute and early acute SCI respectively, which was reflected in a robust correlations with MEPs and BBB scores. While the values of radial diffusivity (RD) showed no significant changes. Conclusions: Our data confirmed that DTI was a valuable in ex vivo imaging tool to identify damaged white matter tracts after graded SCI in rat, which may provide useful information for the early identification of the severity of SCI.


2020 ◽  
pp. 20201000
Author(s):  
Mahmud Mossa-Basha ◽  
Daniel J Peterson ◽  
Daniel S Hippe ◽  
Justin E Vranic ◽  
Christoph Hofstetter ◽  
...  

Objectives: To evaluate segmented diffusion tensor imaging (DTI) white matter tract fractional anisotropy (FA) and mean diffusivity (MD) values in acute cervical spinal cord injury (CSCI). Methods: 15 patients with acute CSCI and 12 control subjects were prospectively recruited and underwent axial DTI as part of the spine trauma MRI. Datasets were put through a semi-automated probabilistic segmentation algorithm that analyzed white matter, motor and sensory tracts. FA and MD values were calculated for white matter, sensory (spinal lemniscal) and motor tracts (ventral/lateral corticospinal) at the level of clinical injury, levels remote from injury and in normal controls. Results: There were significant differences in FA between the level of injury and controls for total white matter (0.65 ± .09 vs 0.68 ± .07; p = .044), motor tracts (0.64 ± .07 vs 0.7 ± .09; p = .006), and combined motor/sensory tracts (0.63 ± .09 vs 0.69 ± .08; p = .022). In addition, there were significant FA differences between the level of injury and one level caudal to the injury for combined motor tracts (0.64 ± .07 vs 0.69 ± .05; p = .002) and combined motor/sensory tracts (0.63 ± .09 vs 0.7 ± .07; p = .011). There were no significant differences for MD between the level of injury and one level caudal to the injury or normal controls. Conclusion: Abnormalities in DTI metrics of DTI-segmented white matter tracts were detected at the neurological level of injury relative to normal controls and levels remote from the injury site, confirming its value in CSCI assessment. Advances in knowledge: Segmented DTI analysis can help identify microstructural spinal cord abnormalities in the setting of traumatic cervical spinal cord injury.


2021 ◽  
Author(s):  
Zheng Cao ◽  
Weitao Man ◽  
Yuhui Xiong ◽  
Yi Guo ◽  
Shuhui Yang ◽  
...  

Abstract A hierarchically aligned fibrin hydrogel (AFG) that possesses soft stiffness and aligned nanofiber structure has been successfully proven to facilitate neuroregeneration in vitro and in vivo. However, its potential in promoting nerve regeneration in large animal models that is critical for clinical translation has not been sufficiently specified. Here, the effects of AFG on directing neuroregeneration in canine hemisected T12 spinal cord injuries were explored. Histologically obvious white matter regeneration consisting of a large area of consecutive, compact, and aligned nerve fibers is induced by AFG, leading to a significant motor functional restoration. The canines with AFG implantation start to stand well with their defective legs from 3 to 4 weeks postoperatively and even effortlessly climb the steps from 7 to 8 weeks. Moreover, high-resolution multi-shot diffusion tensor imaging illustrates the spatiotemporal dynamics of nerve regeneration rapidly crossing the lesion within 4 weeks in the AFG group. Our findings indicate that AFG could be a potential therapeutic vehicle for spinal cord injury by inducing rapid white matter regeneration and restoring locomotion, pointing out its promising prospect in clinic practice.


2018 ◽  
Vol 24 ◽  
pp. 177-182 ◽  
Author(s):  
Chao Zhang ◽  
Kai Chen ◽  
Xiuxin Han ◽  
Jiayuanyuan Fu ◽  
Patricia Douglas ◽  
...  

2013 ◽  
Vol 260 (11) ◽  
pp. 2876-2883 ◽  
Author(s):  
Suk Hoon Ohn ◽  
Deog Young Kim ◽  
Ji Cheol Shin ◽  
Seung Min Kim ◽  
Woo-Kyoung Yoo ◽  
...  

2020 ◽  
pp. 028418512097518
Author(s):  
Yi Liu ◽  
Changbin Liu ◽  
Chuan Qin ◽  
Xin Zhang ◽  
Hao Feng ◽  
...  

Background Spinal cord injury (SCI) is a severe central nervous system injury that can generally induce different degrees of sensory and motor dysfunction Purpose To clarify the changes of diffusion tensor imaging (DTI) parameters after spinal cord myelotomy in rats with SCI. Material and Methods Eighteen Sprague Dawley (SD) rats were randomly divided into the Sham group (n=6), SCI group (n=6), and Mye group (n=6), respectively. The DTI values at 1, 3, 7, and 21 days after modeling were collected by magnetic resonance imaging (MRI). The spinal specimen at the injury site was collected on the 21st day for Nissl’s staining to assess the changes in neurons. Results The fractional anisotropy (FA) values in both the SCI group and Mye group significantly decreased. In addition, the FA values between the two groups were statistically significant ( P < 0.001). The apparent diffusion coefficient (ADC), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values all decreased and then increased ( P < 0.001). Pearson correlation test showed that the ADC, MD, and AD values were positively correlated with the Basso Beattie Bresnahan (BBB) score. Nissl’s staining showed a higher number of Nissl’s bodies, and deep staining of Nissl’s bodies in the Mye group, while the morphology of neurons was relatively good. The number of neurons in the Mye group was significantly higher after myelotomy compared to the SCI group ( P < 0.001). Conclusion The DTI parameters, especially ADC values, could non-invasively and quantifiably evaluate the efficacy of myelotomy for rats with SCI.


Sign in / Sign up

Export Citation Format

Share Document