scholarly journals Valeriana officinalis Counteracts Rotenone Effects on Spreading Depression in the Rat Brain in vivo and Protects Against Rotenone Cytotoxicity Toward Rat Glioma C6 Cells in vitro

2020 ◽  
Vol 14 ◽  
Author(s):  
Ana Paula Amaral de Brito ◽  
Isabel Michely da Silva Galvão de Melo ◽  
Ramon Santos El-Bachá ◽  
Rubem Carlos Araújo Guedes
Neoplasia ◽  
2005 ◽  
Vol 7 (6) ◽  
pp. 563-574 ◽  
Author(s):  
Cristina Trejo-Solís ◽  
Guadalupe Palencia ◽  
Sergio Zuñiga ◽  
Andrea Rodríguez-Ropon ◽  
Laura Osorio-Rico ◽  
...  
Keyword(s):  
C6 Cells ◽  

2020 ◽  
Vol 17 (9) ◽  
pp. 1126-1138
Author(s):  
Maryam Sadat Ashrafzadeh ◽  
Amir Heydarinasab ◽  
Azim Akbarzadeh ◽  
Mehdi Ardjmand

Background: Drug delivery to the brain tumor is limited due to the presence of the blood-brain barrier (BBB). Objective: This study aimed to evaluate the therapeutic effects of cisplatin-loaded PEGylated liposomes, targeted with the OX26 antibody (targeted liposomal cisplatin) against transferrin receptor expressing rat glioma C6 cells in vitro. Method: The liposomes were synthesized using reverse phase evaporation method and were conjugated to the OX26 monoclonal antibody. They were characterized in terms of size, drug encapsulation efficiency, morphology and drug release experiments using dynamic light scattering, atomic absorption spectrometry, scanning electron microscopy, and dialysis membrane methods. Then, their biological activities were evaluated on targeting the BBB. Results: The characterization results showed that spherical nanodrug with a size of 157 nm and drug loading efficiency of 24% was synthesized, which released 64% of the loaded cisplatin after 72 h in a controlled release manner. The nanoparticles caused an increase in the cisplatin cytotoxicity effects by 1.7-, 1.8- and 1.8-fold, compared to cisplatin-loaded PEGylated liposomes (liposomal cisplatin) after 24, 48 and 72h incubation, respectively against C6 cells. Moreover, targeted liposomal cisplatin showed promising results in the transport of cisplatin across the BBB, in which it caused an increase in the cisplatin cytotoxicity on C6 cells by 2.7- and 2.4-fold, compared to cisplatin and liposomal cisplatin, respectively. Conclusion: Regarding the properties of the targeted liposomal cisplatin, it suggests that the potency of the formulation, to be evaluated, for the transport of cisplatin across the BBB, delivers it to the brain tumor in vivo.


2002 ◽  
Vol 10 (8) ◽  
pp. 633-636 ◽  
Author(s):  
Mirjana P. Dacevic ◽  
Jelena S. Tasic ◽  
Vjera M. Pejanovic ◽  
Malcolm B. Segal ◽  
Dragana D. Ugljesic-Kilibarda ◽  
...  

2010 ◽  
Vol 113 (Special_Supplement) ◽  
pp. 228-235 ◽  
Author(s):  
Qiang Jia ◽  
Yanhe Li ◽  
Desheng Xu ◽  
Zhenjiang Li ◽  
Zhiyuan Zhang ◽  
...  

Object The authors sought to evaluate modification of the radiation response of C6 glioma cells in vitro and in vivo by inhibiting the expression of Ku70. To do so they investigated the effect of gene transfer involving a recombinant replication-defective adenovirus containing Ku70 short hairpin RNA (Ad-Ku70shRNA) combined with Gamma Knife treatment (GKT). Methods First, Ad-Ku70shRNA was transfected into C6 glioma cells and the expression of Ku70 was measured using Western blot analysis. In vitro, phenotypical changes in C6 cells, including proliferation, cell cycle modification, invasion ability, and apoptosis were evaluated using the MTT (3′(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, Western blot analysis, and cell flow cytometry. In vivo, parental C6 cells transfected with Ad-Ku70shRNA were implanted stereotactically into the right caudate nucleus in Sprague-Dawley rats. After GKS, apoptosis was analyzed using the TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling) method. The inhibitory effects on growth and invasion that were induced by expression of proliferating cell nuclear antigen and matrix metalloproteinase–9 were determined using immunohistochemical analyses. Results The expression of Ku70 was clearly inhibited in C6 cells after transfection with Ad-Ku70shRNA. In vitro following transfection, the C6 cells showed improved responses to GKT, including suppression of proliferation and invasion as well as an increased apoptosis index. In vivo following transfection of Ad-Ku70shRNA, the therapeutic efficacy of GKT in rats with C6 gliomas was greatly enhanced and survival times in these animals were prolonged. Conclusions Our data support the potential for downregulation of Ku70 expression in enhancing the radiosensitivity of gliomas. The findings of our study indicate that targeted gene therapy–mediated inactivation of Ku70 may represent a promising strategy in improving the radioresponsiveness of gliomas to GKT.


2019 ◽  
Vol 16 (3) ◽  
pp. 175-180
Author(s):  
Fengjin Hao ◽  
Yueqin Feng ◽  
Yifu Guan

Objective: To verify whether the botulinum toxin heavy chain HCS has specific neuronal targeting function and to confirm whether TAT-EGFP-LC has hydrolyzable SNAP-25 and has transmembrane biological activity. Methods: We constructed the pET-28a-TAT-EGFP-HCS/LC plasmid. After the plasmid is expressed and purified, we co-cultured it with nerve cells or tumors. In addition, we used Western-Blot to identify whether protein LC and TAT-EGFP-LC can digest the protein SNAP-25. Results: Fluorescence imaging showed that PC12, BV2, C6 and HeLa cells all showed green fluorescence, and TAT-EGFP-HCS had the strongest fluorescence. Moreover, TAT-EGFP-LC can hydrolyze intracellular SNAP-25 in PC12 cells, C6 cells, BV2 cells and HeLa, whereas LC alone cannot. In addition, the in vivo protein TAT-EGFP-HCS can penetrate the blood-brain barrier and enter mouse brain tissue. Conclusion: TAT-EGFP-HSC expressed in vitro has neural guidance function and can carry large proteins across the cell membrane without influencing the biological activity.


2002 ◽  
Vol 364 (2) ◽  
pp. 343-347 ◽  
Author(s):  
Gareth J.O. EVANS ◽  
Alan MORGAN

The secretory vesicle cysteine string proteins (CSPs) are members of the DnaJ family of chaperones, and function at late stages of Ca2+-regulated exocytosis by an unknown mechanism. To determine novel binding partners of CSPs, we employed a pull-down strategy from purified rat brain membrane or cytosolic proteins using recombinant hexahistidine-tagged (His6-)CSP. Western blotting of the CSP-binding proteins identified synaptotagmin I to be a putative binding partner. Furthermore, pull-down assays using cAMP-dependent protein kinase (PKA)-phosphorylated CSP recovered significantly less synaptotagmin. Complexes containing CSP and synaptotagmin were immunoprecipitated from rat brain membranes, further suggesting that these proteins interact in vivo. Binding assays in vitro using recombinant proteins confirmed a direct interaction between the two proteins and demonstrated that the PKA-phosphorylated form of CSP binds synaptotagmin with approximately an order of magnitude lower affinity than the non-phosphorylated form. Genetic studies have implicated each of these proteins in the Ca2+-dependency of exocytosis and, since CSP does not bind Ca2+, this novel interaction might explain the Ca2+-dependent actions of CSP.


1981 ◽  
Vol 7 (3) ◽  
pp. 237-242 ◽  
Author(s):  
Kristin H. Milby ◽  
Ivan N. Mefford ◽  
Willie Chey ◽  
Ralph N. Adams
Keyword(s):  

1997 ◽  
Vol 17 (5) ◽  
pp. 586-590 ◽  
Author(s):  
Sachiko Osuga ◽  
Antoine M. Hakim ◽  
Hitoshi Osuga ◽  
Matthew J. Hogan

We report autoradiographic measurements of the in vivo uptake of [3H]nimodipine during the nonischemic depolarization of cortical spreading depression (CSD) in rat brain. [3H]Nimodipine uptake in brain was determined regionally in rats undergoing CSD (n = 8) and was significantly increased in cortex (14 ± 7%) and hippocampus (10 ± 6%) on the stimulated side relative to the contralateral hemisphere when compared with the same measurements in a control group (n = 8). A similar measurement using the physiologically inert radiotracer [14C]iodoantipyrine to control for potential effects of CSD on radioligand distribution showed a minimal increase (2.4 ± 0.7%) of radiotracer uptake in cortex after CSD. This increase was significantly less than that observed in the [3H]nimodipine uptake studies. We hypothesize that increased in vivo [3H]nimodipine uptake in CSD identifies regions of depolarization and thus infers activation of the L-type voltage sensitive calcium channels.


1990 ◽  
Vol 183 (5) ◽  
pp. 1623
Author(s):  
J.A.D.M. Tonnaer ◽  
P. Room ◽  
W.M.J.B. Van Gemert ◽  
L.P.C. Delbressine ◽  
T. de Boer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document