scholarly journals Obese Adipose Tissue as a Driver of Breast Cancer Growth and Development: Update and Emerging Evidence

2021 ◽  
Vol 11 ◽  
Author(s):  
Priya Bhardwaj ◽  
Kristy A. Brown

Obesity is an established risk factor for breast cancer growth and progression. A number of advances have been made in recent years revealing new insights into this link. Early events in breast cancer development involve the neoplastic transformation of breast epithelial cells to cancer cells. In obesity, breast adipose tissue undergoes significant hormonal and inflammatory changes that create a mitogenic microenvironment. Many factors that are produced in obesity have also been shown to promote tumorigenesis. Given that breast epithelial cells are surrounded by adipose tissue, the crosstalk between the adipose compartment and breast epithelial cells is hypothesized to be a significant player in the initiation and progression of breast cancer in individuals with excess adiposity. The present review examines this crosstalk with a focus on obese breast adipose-derived estrogen, inflammatory mediators and adipokines, and how they are mechanistically linked to breast cancer risk and growth through stimulation of oxidative stress, DNA damage, and pro-oncogenic transcriptional programs. Pharmacological and lifestyle strategies targeting these factors and their downstream effects are evaluated for feasibility and efficacy in decreasing the risk of obesity-induced breast epithelial cell transformation and consequently, breast cancer development.

2012 ◽  
Vol 324 (2) ◽  
pp. 142-151 ◽  
Author(s):  
Yuan-Yuan Wang ◽  
Camille Lehuédé ◽  
Victor Laurent ◽  
Béatrice Dirat ◽  
Stéphanie Dauvillier ◽  
...  

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Priya Bhardwaj ◽  
Neil Iyengar ◽  
Sofya Oshchepkova ◽  
Rohan Bareja ◽  
Andrew Dannenberg ◽  
...  

Oncogene ◽  
2003 ◽  
Vol 22 (48) ◽  
pp. 7600-7606 ◽  
Author(s):  
Chunyan Zhao ◽  
Eric W-F Lam ◽  
Andrew Sunters ◽  
Eva Enmark ◽  
Manuela Tamburo De Bella ◽  
...  

2014 ◽  
Vol 21 (4) ◽  
pp. T183-T202 ◽  
Author(s):  
Gerard A Tarulli ◽  
Lisa M Butler ◽  
Wayne D Tilley ◽  
Theresa E Hickey

While it has been known for decades that androgen hormones influence normal breast development and breast carcinogenesis, the underlying mechanisms have only been recently elucidated. To date, most studies have focused on androgen action in breast cancer cell lines, yet these studies represent artificial systems that often do not faithfully replicate/recapitulate the cellular, molecular and hormonal environments of breast tumoursin vivo. It is critical to have a better understanding of how androgens act in the normal mammary gland as well as inin vivosystems that maintain a relevant tumour microenvironment to gain insights into the role of androgens in the modulation of breast cancer development. This in turn will facilitate application of androgen-modulation therapy in breast cancer. This is particularly relevant as current clinical trials focus on inhibiting androgen action as breast cancer therapy but, depending on the steroid receptor profile of the tumour, certain individuals may be better served by selectively stimulating androgen action. Androgen receptor (AR) protein is primarily expressed by the hormone-sensing compartment of normal breast epithelium, commonly referred to as oestrogen receptor alpha (ERa (ESR1))-positive breast epithelial cells, which also express progesterone receptors (PRs) and prolactin receptors and exert powerful developmental influences on adjacent breast epithelial cells. Recent lineage-tracing studies, particularly those focussed on NOTCH signalling, and genetic analysis of cancer risk in the normal breast highlight how signalling via the hormone-sensing compartment can influence normal breast development and breast cancer susceptibility. This provides an impetus to focus on the relationship between androgens, AR and NOTCH signalling and the crosstalk between ERa and PR signalling in the hormone-sensing component of breast epithelium in order to unravel the mechanisms behind the ability of androgens to modulate breast cancer initiation and growth.


Sign in / Sign up

Export Citation Format

Share Document