scholarly journals Overall Survival Prediction for Gliomas Using a Novel Compound Approach

2021 ◽  
Vol 11 ◽  
Author(s):  
He Huang ◽  
Wenbo Zhang ◽  
Ying Fang ◽  
Jialing Hong ◽  
Shuaixi Su ◽  
...  

As a highly malignant tumor, the incidence and mortality of glioma are not optimistic. Predicting the survival time of patients with glioma by extracting the feature information from gliomas is beneficial for doctors to develop more targeted treatments. Magnetic resonance imaging (MRI) is a way to quickly and clearly capture the details of brain tissue. However, manually segmenting brain tumors from MRI will cost doctors a lot of energy, and doctors can only vaguely estimate the survival time of glioma patients, which are not conducive to the formulation of treatment plans. Therefore, automatically segmenting brain tumors and accurately predicting survival time has important significance. In this article, we first propose the NLSE-VNet model, which integrates the Non-Local module and the Squeeze-and-Excitation module into V-Net to segment three brain tumor sub-regions in multimodal MRI. Then extract the intensity, texture, wavelet, shape and other radiological features from the tumor area, and use the CNN network to extract the deep features. The factor analysis method is used to reduce the dimensionality of features, and finally the dimensionality-reduced features and clinical features such as age and tumor grade are combined into the random forest regression model to predict survival. We evaluate the effect on the BraTS 2019 and BraTS 2020 datasets. The average Dice of brain tumor segmentation tasks up to 79% and the average RMSE of the survival predictive task is as low as 311.5. The results indicate that the method in this paper has great advantages in segmentation and survival prediction of gliomas.

2018 ◽  
Vol 7 (2) ◽  
pp. 18-30 ◽  
Author(s):  
Poornachandra Sandur ◽  
C. Naveena ◽  
V.N. Manjunath Aradhya ◽  
Nagasundara K. B.

The quantitative assessment of tumor extent is necessary for surgical planning, as well as monitoring of tumor growth or shrinkage, and radiotherapy planning. For brain tumors, magnetic resonance imaging (MRI) is used as a standard for diagnosis and prognosis. Manually segmenting brain tumors from 3D MRI volumes is tedious and depends on inter and intra observer variability. In the clinical facilities, a reliable fully automatic brain tumor segmentation method is necessary for the accurate delineation of tumor sub regions. This article presents a 3D U-net Convolutional Neural Network for segmentation of a brain tumor. The proposed method achieves a mean dice score of 0.83, a specificity of 0.80 and a sensitivity of 0.81 for segmenting the whole tumor, and for the tumor core region a mean dice score of 0.76, a specificity of 0.79 and a sensitivity of 0.73. For the enhancing region, the mean dice score is 0.68, a specificity of 0.73 and a sensitivity of 0.77. From the experimental analysis, the proposed U-net model achieved considerably good results compared to the other segmentation models.


Author(s):  
Samah Abdelaziz ◽  
Songfeng Lu

<p>Brain is a complicated structure consisting of millions of millions cells so that, it’s difficult to identify any diseases without using any computerized technology. Magnetic resonance imaging (mri) is one of the main assessments of brain tumors. One of the most important steps on medical image processing is segmentation. Segmenting brain mri images, which provide accurate information for the diagnosis and therapy decisions of brain tumors. We proposed to segment brain tumor mri images into three parts (wm (white matter), gm (gray matter), and background). The first algorithm is for applying median filtering on brain mri image for removing the noise from the image for achieving accurate results. The second algorithm is for applying k-means algorithm for accuracy in time consuming and for clustering into regions and  the third algorithm indicate the detecting the boundary of the image with the use of level set. By comparison, our proposed method, its efficiency to segment perfectly more than other previous used algorithms especially on time consuming.</p>


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


2021 ◽  
Author(s):  
Ali Nawaz ◽  
Usman Akram ◽  
Anum Abdul Salam ◽  
Amad Rizwan Ali ◽  
Attique Ur Rehman ◽  
...  

2022 ◽  
Vol 22 (1) ◽  
pp. 1-30
Author(s):  
Rahul Kumar ◽  
Ankur Gupta ◽  
Harkirat Singh Arora ◽  
Balasubramanian Raman

Brain tumors are one of the critical malignant neurological cancers with the highest number of deaths and injuries worldwide. They are categorized into two major classes, high-grade glioma (HGG) and low-grade glioma (LGG), with HGG being more aggressive and malignant, whereas LGG tumors are less aggressive, but if left untreated, they get converted to HGG. Thus, the classification of brain tumors into the corresponding grade is a crucial task, especially for making decisions related to treatment. Motivated by the importance of such critical threats to humans, we propose a novel framework for brain tumor classification using discrete wavelet transform-based fusion of MRI sequences and Radiomics feature extraction. We utilized the Brain Tumor Segmentation 2018 challenge training dataset for the performance evaluation of our approach, and we extract features from three regions of interest derived using a combination of several tumor regions. We used wrapper method-based feature selection techniques for selecting a significant set of features and utilize various machine learning classifiers, Random Forest, Decision Tree, and Extra Randomized Tree for training the model. For proper validation of our approach, we adopt the five-fold cross-validation technique. We achieved state-of-the-art performance considering several performance metrics, 〈 Acc , Sens , Spec , F1-score , MCC , AUC 〉 ≡ 〈 98.60%, 99.05%, 97.33%, 99.05%, 96.42%, 98.19% 〉, where Acc , Sens , Spec , F1-score , MCC , and AUC represents the accuracy, sensitivity, specificity, F1-score, Matthews correlation coefficient, and area-under-the-curve, respectively. We believe our proposed approach will play a crucial role in the planning of clinical treatment and guidelines before surgery.


2021 ◽  
Author(s):  
Rupal Agravat ◽  
Mehul Raval

<div>Glioma is the most deadly brain tumor with high mortality. Treatment planning by human experts depends on the proper diagnosis of physical symptoms along with Magnetic Resonance(MR) image analysis. Highly variability of a brain tumor in terms of size, shape, location, and a high volume of MR images makes the analysis time-consuming. Automatic segmentation methods achieve a reduction in time with excellent reproducible results.</div><div>The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation. It is also essential to make an objective evaluation of various models based on the benchmark. Therefore, the 2012 - 2019 BraTS challenges database evaluates state-of-the-art methods. The complexity of tasks under the challenge has grown from segmentation (Task1) to overall survival prediction (Task 2) to uncertainty prediction for classification (Task 3). The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1. The aim is to showcase a complete change of trends in automated brain tumor models. The paper also covers end to end joint models involving brain tumor segmentation and overall survival prediction. All the methods are probed, and parameters that affect performance are tabulated and analyzed.</div>


Sign in / Sign up

Export Citation Format

Share Document