scholarly journals Optimization and In Vivo Profiling of a Refined Rat Model of Walker 256 Breast Cancer Cell-Induced Bone Pain Using Behavioral, Radiological, Histological, Immunohistochemical and Pharmacological Methods

2017 ◽  
Vol 8 ◽  
Author(s):  
Priyank Shenoy ◽  
Andy Kuo ◽  
Irina Vetter ◽  
Maree T. Smith
2019 ◽  
Vol 46 (12) ◽  
pp. 1201-1215 ◽  
Author(s):  
Priyank A. Shenoy ◽  
Andy Kuo ◽  
German Leparc ◽  
Tobias Hildebrandt ◽  
Werner Rust ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Priyank A. Shenoy ◽  
Andy Kuo ◽  
Irina Vetter ◽  
Maree T. Smith

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Zhongwei Li ◽  
Diandian Wang ◽  
Xintian Chen ◽  
Wenwen Wang ◽  
Pengfei Wang ◽  
...  

AbstractProtein arginine methyltransferase 1 (PRMT1) is able to promote breast cancer cell proliferation. However, the detailed mechanisms of PRMT1-mediated breast cancer cell proliferation are largely unknown. In this study, we reveal that PRMT1-mediated methylation of EZH2 at the R342 site (meR342-EZH2) has a great effect on PRMT1-induced cell proliferation. We also demonstrate that meR342-EZH2 can accelerate breast cancer cell proliferation in vitro and in vivo. Further, we show that meR342-EZH2 promotes cell cycle progression by repressing P16 and P21 transcription expression. In terms of mechanism, we illustrate that meR342-EZH2 facilitates EZH2 binding with SUZ12 and PRC2 assembly by preventing AMPKα1-mediated phosphorylation of pT311-EZH2, which results in suppression of P16 and P21 transcription by enhancing EZH2 expression and H3K27me3 enrichment at P16 and P21 promoters. Finally, we validate that the expression of PRMT1 and meR342-EZH2 is negatively correlated with pT311-EZH2 expression. Our findings suggest that meR342-EZH2 may become a novel therapeutic target for the treatment of breast cancer.


2014 ◽  
Vol 8 (Suppl 4) ◽  
pp. P22
Author(s):  
Klesia Madeira ◽  
Murilo Cerri ◽  
Renata Daltoé ◽  
Alice Herlinger ◽  
João Filho ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 625 ◽  
Author(s):  
Yi-Fen Chiang ◽  
Hsin-Yuan Chen ◽  
Ko-Chieh Huang ◽  
Po-Han Lin ◽  
Shih-Min Hsia

Excessive growth of cancer cells is the main cause of cancer mortality. Therefore, discovering how to inhibit cancer growth is an important research topic. Recently, the newly discovered adipokine, known as nicotinamide phosphoribosyl transferase (NAMPT, visfatin), which has been associated with metabolic syndrome and obesity, has also been found to be a major cause of cancer proliferation. Therefore, inhibition of NAMPT and reduction of Nicotinamide adenine dinucleotide (NAD) synthesis is one strategy for cancer therapy. Cinnamaldehyde (CA), as an antioxidant and anticancer natural compound, may have the ability to inhibit visfatin. The breast cancer cell line and xenograft animal models were treated under different dosages of visfatin combined with CA and FK866 (a visfatin inhibitor) to test for cell toxicity, as well as inhibition of tumor-related proliferation of protein expression. In the breast cancer cell and the xenograft animal model, visfatin significantly increased proliferation-related protein expression, but combination with CA or FK866 significantly reduced visfatin-induced carcinogenic effects. For the first time, a natural compound inhibiting extracellular and intracellular NAMPT has been demonstrated. We hope that, in the future, this can be used as a potential anticancer compound and provide further directions for research.


2013 ◽  
Vol 65 (3) ◽  
pp. 460-468 ◽  
Author(s):  
Meilan Xue ◽  
Yinlin Ge ◽  
Jinyu Zhang ◽  
Yongchao Liu ◽  
Qing Wang ◽  
...  

2009 ◽  
Vol 120 (1) ◽  
pp. 253-260 ◽  
Author(s):  
Ramon C. Sun ◽  
Mitali Fadia ◽  
Jane E. Dahlstrom ◽  
Christopher R. Parish ◽  
Philip G. Board ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document