scholarly journals Tussilagone Inhibits Osteoclastogenesis and Periprosthetic Osteolysis by Suppressing the NF-κB and P38 MAPK Signaling Pathways

2020 ◽  
Vol 11 ◽  
Author(s):  
Xuantao Hu ◽  
Ziqing Yin ◽  
Xia Chen ◽  
Guangyao Jiang ◽  
Daishui Yang ◽  
...  
2019 ◽  
Author(s):  
Xuantao Hu ◽  
Zhengxiao Ouyang ◽  
Dan Peng ◽  
Ziqing Yin ◽  
Xia Chen ◽  
...  

Abstract Backgroud: Aseptic prosthetic loosening is one of main factor producing poor prognosis of limb function after joint replacement and requiring troublesome revision surgery. It is featured by wear particle–induced periprosthetic osteolysis mediated by excessive osteoclasts activated in inflammatory cell context. In our previous study, some natural compounds showing anti-osteoclast trait with high cost-efficiency and few side effects. Tussilagone (TUS), as the main functional extract from Tussilago Farfara precedently used for relieving cough, asthma and eliminating phlegm in traditional medicine, has been proved to appease several RAW264.7-mediated inflammatory diseases via suppressing osteoclast-related signaling cascades. However, whether and how TUS can improve aseptic prosthetic loosening via modulating osteoclast-mediated bone resorption still need to be answered. Methods: We established a murine calvarial osteolysis model to detect the preventative effect of TUS on osteolysis in vivo. Micro-CT scanning and histomorphometric analysis were used to determine the variation of bone resorption and osteoclastogenesis in samples. The anti-osteoclast-differentiation and anti-bone-resorption bioactivities of TUS in vitro were investigated using bone slice resorption pit evaluation and interference caused by cytotoxicity of TUS was excluded according to CCK-8 assay. Quantitative PCR analysis was applied to prove the decreased expression of osteoclast-specific genes after TUS treatment. The inhibition effect of TUS on NF-κb and p38 MAPK signaling pathways was testified by western blotting and NF-κB-linked luciferase reporter gene assay.Results: TUS demonstrated bone protective effect against osteolysis in murine calvarial osteolysis model with reduced osteoclasts compared to the control group. Following studies in vitro witnessed that TUS exert anti-osteoclastogenesis and anti-bone-resorption effects in both BMMs and RAW264.7 cells, as evidenced by the decline of osteoclast specific genes according to quantative PCR. Western blotting revealed that TUS-treated demonstrated inhibited IκBα degradation and p38 phosphorylation.Conclusions: Collectively, for the first time our studies prove that TUS inhibits osteoclastogenesis by suppressing the NF-κb and p38 MAPK signaling pathways, therefore serving as a potential natural compound to treat periprosthetic osteolysis-induced aseptic prosthetic loosening.


2008 ◽  
Vol 295 (3) ◽  
pp. H1319-H1329 ◽  
Author(s):  
Konstantina Stathopoulou ◽  
Isidoros Beis ◽  
Catherine Gaitanaki

pH is one of the most important physiological parameters, with its changes affecting the function of vital organs like the heart. However, the effects of alkalosis on the regulation of cardiac myocyte function have not been extensively investigated. Therefore, we decided to study whether the mitogen-activated protein kinase (MAPK) signaling pathways [c-Jun NH2-terminal kinases (JNKs), extracellular signal-regulated kinases (ERKs), and p38 MAPK] are activated by alkalosis induced with Tris-Tyrode buffer at two pH values, 8.5 and 9.5, in H9c2 rat cardiac myoblasts. These buffers also induced intracellular alkalinization comparable to that induced by 1 mM NH4Cl. The three MAPKs examined presented differential phosphorylation patterns that depended on the severity and the duration of the stimulus. Inhibition of Na+/H+ exchanger (NHE)1 by its inhibitor HOE-642 prevented alkalinization and partially attenuated the alkalosis (pH 8.5)-induced activation of these kinases. The same stimulus also promoted c-Jun phosphorylation and enhanced the binding at oligonucleotides bearing the activator protein-1 (AP-1) consensus sequence, all in a JNK-dependent manner. Additionally, mitogen- and stress-activated kinase 1 (MSK1) was transiently phosphorylated by alkalosis (pH 8.5), and this was abolished by the selective inhibitors of either p38 MAPK or ERK pathways. JNKs also mediated Bcl-2 phosphorylation in response to incubation with the alkaline medium (pH 8.5), while selective inhibitors of the three MAPKs diminished cell viability under these conditions. All these data suggest that alkalosis activates MAPKs in H9c2 cells and these kinases, in turn, modify proteins that regulate gene transcription and cell survival.


Sign in / Sign up

Export Citation Format

Share Document