scholarly journals Ferroptosis-Inducing Nanomedicine for Cancer Therapy

2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Wang ◽  
Tianfu Liu ◽  
Xiang Li ◽  
Hui Sheng ◽  
Xiaowen Ma ◽  
...  

Ferroptosis, a new iron- and reactive oxygen species–dependent form of regulated cell death, has attracted much attention in the therapy of various types of tumors. With the development of nanomaterials, more and more evidence shows the potential of ferroptosis combined with nanomaterials for cancer therapy. Recently, there has been much effort to develop ferroptosis-inducing nanomedicine, specially combined with the conventional or emerging therapy. Therefore, it is necessary to outline the previous work on ferroptosis-inducing nanomedicine and clarify directions for improvement and application to cancer therapy in the future. In this review, we will comprehensively focus on the strategies of cancer therapy based on ferroptosis-inducing nanomedicine currently, elaborate on the design ideas of synthesis, analyze the advantages and limitations, and finally look forward to the future perspective on the emerging field.

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Bartosz Wiernicki ◽  
Hanne Dubois ◽  
Yulia Y. Tyurina ◽  
Behrouz Hassannia ◽  
Hülya Bayir ◽  
...  

Abstract Lipid peroxidation (LPO) drives ferroptosis execution. However, LPO has been shown to contribute also to other modes of regulated cell death (RCD). To clarify the role of LPO in different modes of RCD, we studied in a comprehensive approach the differential involvement of reactive oxygen species (ROS), phospholipid peroxidation products, and lipid ROS flux in the major prototype modes of RCD viz. apoptosis, necroptosis, ferroptosis, and pyroptosis. LC-MS oxidative lipidomics revealed robust peroxidation of three classes of phospholipids during ferroptosis with quantitative predominance of phosphatidylethanolamine species. Incomparably lower amounts of phospholipid peroxidation products were found in any of the other modes of RCD. Nonetheless, a strong increase in lipid ROS levels was detected in non-canonical pyroptosis, but only during cell membrane rupture. In contrast to ferroptosis, lipid ROS apparently was not involved in non-canonical pyroptosis execution nor in the release of IL-1β and IL-18, while clear dependency on CASP11 and GSDMD was observed. Our data demonstrate that ferroptosis is the only mode of RCD that depends on excessive phospholipid peroxidation for its cytotoxicity. In addition, our results also highlight the importance of performing kinetics and using different methods to monitor the occurrence of LPO. This should open the discussion on the implication of particular LPO events in relation to different modes of RCD.


2021 ◽  
Author(s):  
Guang Lei ◽  
Chao Mao ◽  
Yuelong Yan ◽  
Li Zhuang ◽  
Boyi Gan

AbstractFerroptosis, an iron-dependent form of regulated cell death driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes, has recently been revealed to play an important role in radiotherapy-induced cell death and tumor suppression, and to mediate the synergy between radiotherapy and immunotherapy. In this review, we summarize known as well as putative mechanisms underlying the crosstalk between radiotherapy and ferroptosis, discuss the interactions between ferroptosis and other forms of regulated cell death induced by radiotherapy, and explore combination therapeutic strategies targeting ferroptosis in radiotherapy and immunotherapy. This review will provide important frameworks for future investigations of ferroptosis in cancer therapy.


2016 ◽  
Vol 473 (6) ◽  
pp. 769-777 ◽  
Author(s):  
Seiji Torii ◽  
Ryosuke Shintoku ◽  
Chisato Kubota ◽  
Makoto Yaegashi ◽  
Ryoko Torii ◽  
...  

We suggest that reactive oxygen species (ROS)-generating activity in lysosomes contributes to ferroptosis, an iron-dependent form of cell death that was recently discovered.


BMC Cancer ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Ana Carolina Martínez-Torres ◽  
Alejandra Reyes-Ruiz ◽  
Milena Benítez-Londoño ◽  
Moises Armides Franco-Molina ◽  
Cristina Rodríguez-Padilla

2020 ◽  
Vol 27 ◽  
Author(s):  
Xinrui Li ◽  
Liang Ma ◽  
Ping Fu

: Mitochondria are potent source of cellular reactive oxygen species (ROS) and are vulnerable to oxidative damage. Mitochondria dysfunction could result in adenosine triphosphate (ATP) decrease and cell death. The kidney is an ATPconsuming organ, and the relationship between mitochondrial dysfunction and renal disease has been long noted. Mitochondrial targeting is a novel strategy for kidney diseases. At present, there are several ways to target mitochondria such as the addition of a triphenylphosphonium cation, mitochondria-targeted peptides, and nanocarrier. There are also a variety of choices for the payload, such as nitroxides, quinone derivates, vitamins and so on. This review summarized chemical and also clinical characteristics of various mitochondria-targeted antioxidants and focused on their application and perspectives in kidney diseases.


Sign in / Sign up

Export Citation Format

Share Document