scholarly journals The Quantitative Comparison Between the Neuronal Network and the Cosmic Web

2020 ◽  
Vol 8 ◽  
Author(s):  
F. Vazza ◽  
A. Feletti

We investigate the similarities between two of the most challenging and complex systems in Nature: the network of neuronal cells in the human brain, and the cosmic network of galaxies. We explore the structural, morphological, network properties and the memory capacity of these two fascinating systems, with a quantitative approach. In order to have an homogeneous analysis of both systems, our procedure does not consider the true neural connectivity but an approximation of it, based on simple proximity. The tantalizing degree of similarity that our analysis exposes seems to suggest that the self-organization of both complex systems is likely being shaped by similar principles of network dynamics, despite the radically different scales and processes at play.

Author(s):  
Zhibin Yu ◽  
Yanping Dong

Abstract Research on the development of interpreting competence could be a window to the issue of how L2 learners develop complex language skills. The present study conducted a longitudinal experiment with beginning interpreting students, exploring the change of relationship between consecutive interpreting (CI) competence and two related capacities (i.e., language competence and memory capacity). Two major results were revealed. First, in general, more language skills and working memory (WM) spans got correlated with CI performance at the later stage of CI training. Second, a fit structural equation model of CI competence could only be reported in the post-test. We may therefore conclude that the development of interpreting competence is at least partly a result of the self-organization of the interpreting competence system, in which relevant components get mobilized, and a better coordinated structure emerges. Implications for the development of complex language skills and for the concept of self-organization are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1152
Author(s):  
Tatyana Kirila ◽  
Anna Smirnova ◽  
Alla Razina ◽  
Andrey Tenkovtsev ◽  
Alexander Filippov

The water–salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0–0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 80 ◽  
Author(s):  
Mykola Chausov ◽  
Janette Brezinová ◽  
Andrii Pylypenko ◽  
Pavlo Maruschak ◽  
Liudmyla Titova ◽  
...  

A simple technological method is proposed and tested experimentally, which allows for the improvement of mechanical properties in sheet two-phase high-strength titanium alloys VT23 and VT23M on the finished product (rolled metal), due to impact-oscillatory loading. Under impact-oscillatory loading and dynamic non-equilibrium processes (DNP) are realized in titanium alloys, leading to the self-organization of the structure. As a result, the mechanical properties of titanium alloys vary significantly with subsequent loading after the realization of DNP. In this study, the test modes are found, which can be used in the production conditions.


Sign in / Sign up

Export Citation Format

Share Document