scholarly journals Corrigendum: Artificial Intelligence for Monte Carlo Simulation in Medical Physics

2021 ◽  
Vol 9 ◽  
Author(s):  
David Sarrut ◽  
Ane Etxebeste ◽  
Enrique Muñoz ◽  
Nils Krah ◽  
Jean Michel Létang
2021 ◽  
Vol 9 ◽  
Author(s):  
David Sarrut ◽  
Ane Etxebeste ◽  
Enrique Muñoz ◽  
Nils Krah ◽  
Jean Michel Létang

Monte Carlo simulation of particle tracking in matter is the reference simulation method in the field of medical physics. It is heavily used in various applications such as 1) patient dose distribution estimation in different therapy modalities (radiotherapy, protontherapy or ion therapy) or for radio-protection investigations of ionizing radiation-based imaging systems (CT, nuclear imaging), 2) development of numerous imaging detectors, in X-ray imaging (conventional CT, dual-energy, multi-spectral, phase contrast … ), nuclear imaging (PET, SPECT, Compton Camera) or even advanced specific imaging methods such as proton/ion imaging, or prompt-gamma emission distribution estimation in hadrontherapy monitoring. Monte Carlo simulation is a key tool both in academic research labs as well as industrial research and development services. Because of the very nature of the Monte Carlo method, involving iterative and stochastic estimation of numerous probability density functions, the computation time is high. Despite the continuous and significant progress on computer hardware and the (relative) easiness of using code parallelisms, the computation time is still an issue for highly demanding and complex simulations. Hence, since decades, Variance Reduction Techniques have been proposed to accelerate the processes in a specific configuration. In this article, we review the recent use of Artificial Intelligence methods for Monte Carlo simulation in medical physics and their main associated challenges. In the first section, the main principles of some neural networks architectures such as Convolutional Neural Networks or Generative Adversarial Network are briefly described together with a literature review of their applications in the domain of medical physics Monte Carlo simulations. In particular, we will focus on dose estimation with convolutional neural networks, dose denoising from low statistics Monte Carlo simulations, detector modelling and event selection with neural networks, generative networks for source and phase space modelling. The expected interests of those approaches are discussed. In the second section, we focus on the current challenges that still arise in this promising field.


Author(s):  
Tomasz Rymarczyk ◽  
Grzegorz Kłosowski

In this paper, the conceptual model of risk-based cost estimation for completing tasks within supply chain is presented. This model is a hybrid. Its main unit is based on Monte Carlo Simulation (MCS). Due to the fact that the important and difficult to evaluate input information is vector of risk-occur probabilities the use of artificial intelligence method was proposed. The model assumes the use of fuzzy logic or artificial neural networks – depending on the availability of historical data. The presented model could provide support to managers in making valuation decisions regarding various tasks in supply chain management.


2017 ◽  
Vol 202 ◽  
pp. 254-267 ◽  
Author(s):  
José Octavio Rico-Contreras ◽  
Alberto Alfonso Aguilar-Lasserre ◽  
Juan Manuel Méndez-Contreras ◽  
Jhony Josué López-Andrés ◽  
Gabriela Cid-Chama

2012 ◽  
Vol 39 (9) ◽  
pp. 7929-7937 ◽  
Author(s):  
Carlos R. García-Alonso ◽  
Esther Arenas-Arroyo ◽  
Gabriel M. Pérez-Alcalá

Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Sign in / Sign up

Export Citation Format

Share Document