scholarly journals Cucurbitacin E Inhibits Proliferation and Migration of Intestinal Epithelial Cells via Activating Cofilin

2018 ◽  
Vol 9 ◽  
Author(s):  
Huapei Song ◽  
Yu Wang ◽  
Li Li ◽  
Hehuan Sui ◽  
Pei Wang ◽  
...  

2020 ◽  
Vol 5 (52) ◽  
pp. eabd2876
Author(s):  
Zhan Zhang ◽  
Jun Zou ◽  
Zhenda Shi ◽  
Benyue Zhang ◽  
Lucie Etienne-Mesmin ◽  
...  

Bacterial flagellin can elicit production of TLR5-mediated IL-22 and NLRC4-mediated IL-18 cytokines that act in concert to cure and prevent rotavirus (RV) infection. This study investigated the mechanism by which these cytokines act to impede RV. Although IL-18 and IL-22 induce each other’s expression, we found that IL-18 and IL-22 both impeded RV independently of one another and did so by distinct mechanisms that involved activation of their cognate receptors in intestinal epithelial cells (IEC). IL-22 drove IEC proliferation and migration toward villus tips, which resulted in increased extrusion of highly differentiated IEC that serve as the site of RV replication. In contrast, IL-18 induced cell death of RV-infected IEC thus directly interrupting the RV replication cycle, resulting in spewing of incompetent virus into the intestinal lumen and causing a rapid drop in the number of RV-infected IEC. Together, these actions resulted in rapid and complete expulsion of RV, even in hosts with severely compromised immune systems. These results suggest that a cocktail of IL-18 and IL-22 might be a means of treating viral infections that preferentially target short-lived epithelial cells.



2021 ◽  
pp. 1-8
Author(s):  
Xiaomei Xu ◽  
Guangmang Liu ◽  
Gang Jia ◽  
Hua Zhao ◽  
Xiaoling Chen ◽  
...  


2019 ◽  
Author(s):  
Zhan Zhang ◽  
Jun Zou ◽  
Zhenda Shi ◽  
Benyue Zhang ◽  
Lucie Etienne-Mesmin ◽  
...  

SummaryAdministration of bacterial flagellin elicits production of TLR5-mediated IL-22 and NLRC4-mediated IL-18 that act in concert to cure and prevent rotavirus (RV) infection. This study investigated the mechanism by which these cytokines act to impede this virus. Although IL-18 and IL-22 induce each other’s expression, we found that IL-18 and IL-22 both impeded RV independently of each other and did so by distinct mechanisms, in both cases via activation of their cognate receptors in intestinal epithelial cells (IEC). IL-22 drove IEC proliferation and migration toward villus tips, which resulted in increased extrusion of highly differentiated IEC that serve as the site of RV replication. In contrast, IL-18 induced pyroptotic death of RV-infected IEC thus directly interrupting the RV replication cycle, resulting in spewing of incompetent virus into the intestinal lumen and causing a rapid drop in levels of RV-infected IEC. Together, these actions resulted in rapid and complete expulsion of RV, even in hosts with severely compromised immune systems. These results suggest that IL-18/22 might be a means of treating viral infections that preferentially target short-lived epithelial cells.



1999 ◽  
Vol 277 (1) ◽  
pp. G175-G182 ◽  
Author(s):  
Maryam Varedi ◽  
George H. Greeley ◽  
David N. Herndon ◽  
Ella W. Englander

The effects of a 60% body surface area thermal injury in rats on the morphology and proliferation of the epithelium of the small intestine and the in vitro effects of serum collected from scalded rats on intestinal epithelial cells were investigated. Scald injury caused significant reductions in duodenal villus width and crypt dimensions, villus enterocytes changed in shape from columnar to cuboidal, and the number of goblet cells decreased. The proportion of bromodeoxyuridine-labeled S phase cells in crypts was also diminished. In vitro, incubation of intestinal epithelial cells (IEC-6) with scalded rat serum (SRS) collected at either 12 or 24 h after injury caused a disruption in the integrity of the confluent culture and induced the appearance of large denuded areas. SRS also decreased DNA synthesis and delayed wound closure in an in vitro wound-healing model. The thermal injury-induced changes in intestinal mucosal morphology and epithelial cell growth characteristics described in this study may underlie, in part, the mechanism(s) involved in the diminished absorption of nutrients, increased intestinal permeability, and sepsis in patients with thermal injury.



2016 ◽  
Vol 311 (3) ◽  
pp. G458-G465 ◽  
Author(s):  
Jason D. Matthews ◽  
Ronen Sumagin ◽  
Benjamin Hinrichs ◽  
Asma Nusrat ◽  
Charles A. Parkos ◽  
...  

Intestinal wounds often occur during inflammatory and ischemic disorders of the gut. To repair damage, intestinal epithelial cells must rapidly spread and migrate to cover exposed lamina propria, events that involve redox signaling. Wounds are subject to extensive redox alterations, particularly resulting from H2O2 produced in the adjacent tissue by both the epithelium and emigrating leukocytes. The mechanisms governing these processes are not fully understood, particularly at the level of protein signaling. Crk-associated substrate, or Cas, is an important signaling protein known to modulate focal adhesion and actin cytoskeletal dynamics, whose association with Crk is regulated by Abl kinase, a ubiquitously expressed tyrosine kinase. We sought to evaluate the role of Abl regulation of Cas at the level of cell spreading and migration during wound closure. As a model, we used intestinal epithelial cells exposed to H2O2 or scratch wounded to assess the Abl-Cas signaling pathway. We characterized the localization of phosphorylated Cas in mouse colonic epithelium under baseline conditions and after biopsy wounding the mucosa. Analysis of actin and focal adhesion dynamics by microscopy or biochemical analysis after manipulating Abl kinase revealed that Abl controls redox-dependent Cas phosphorylation and localization to influence cell spreading and migration. Collectively, our data shed new light on redox-sensitive protein signaling modules controlling intestinal wound healing.



2020 ◽  
Vol 11 ◽  
Author(s):  
Huapei Song ◽  
Hehuan Sui ◽  
Qiong Zhang ◽  
Pei Wang ◽  
Fengjun Wang


2003 ◽  
Vol 124 (4) ◽  
pp. A610-A611
Author(s):  
Douglas J. Turner ◽  
Bernard S. Marasa ◽  
Jaladanki N. Rao ◽  
Xin Guo ◽  
Jian-Ying Wang ◽  
...  


2005 ◽  
Vol 288 (2) ◽  
pp. C321-C328 ◽  
Author(s):  
Charles C. Yang ◽  
Hiroyuki Ogawa ◽  
Michael B. Dwinell ◽  
Declan F. McCole ◽  
Lars Eckmann ◽  
...  

Human colon epithelial cells express the G protein-coupled receptor CCR6, the sole receptor for the chemokine CCL20 (also termed MIP-3α). CCL20 produced by intestinal epithelial cells is upregulated in response to proinflammatory stimuli and microbial infection, and it chemoattracts leukocytes, including CCR6-expressing immature myeloid dendritic cells, into sites of inflammation. The aim of this study was to determine whether CCR6 expressed by intestinal epithelial cells acts as a functional receptor for CCL20 and whether stimulation with CCL20 alters intestinal epithelial cell functions. The human colon epithelial cell lines T84, Caco-2, HT-29, and HCA-7 were used to model colonic epithelium. Polarized intestinal epithelial cells constitutively expressed CCR6, predominantly on the apical side. Consistent with this, apical stimulation of polarized intestinal epithelial cells resulted in tyrosine phosphorylation of the p130 Crk-associated substrate (Cas), an adaptor/scaffolding protein that localizes in focal adhesions and has a role in regulating cytoskeletal elements important for cell attachment and migration. In addition, CCL20 stimulation inhibited agonist-stimulated production of the second messenger cAMP and cAMP-mediated chloride secretory responses by intestinal epithelial cells. Inhibition was abrogated by pertussis toxin, consistent with signaling through Gαiproteins that negatively regulate adenylyl cyclases and cAMP production. These data indicate that signaling events, occurring via the activation of the apically expressed chemokine receptor CCR6 on polarized intestinal epithelial cells, alter specialized intestinal epithelial cell functions, including electrogenic ion secretion and possibly epithelial cell adhesion and migration.



2004 ◽  
Vol 279 (25) ◽  
pp. 26707-26715 ◽  
Author(s):  
Lillian Ouko ◽  
Thomas R. Ziegler ◽  
Li H. Gu ◽  
Leonard M. Eisenberg ◽  
Vincent W. Yang


Sign in / Sign up

Export Citation Format

Share Document