scholarly journals Effects of Ankle Muscle Fatigue and Visual Behavior on Postural Sway in Young Adults

2019 ◽  
Vol 10 ◽  
Author(s):  
Fabio A. Barbieri ◽  
Tiago Penedo ◽  
Lucas Simieli ◽  
Ricardo A. Barbieri ◽  
Alessandro M. Zagatto ◽  
...  
Healthcare ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 578
Author(s):  
Im-Rak Choi ◽  
Jung-Hoon Lee

Ankle muscle fatigue causes joint instability and increased postural sway, which triggers imbalance, leading to injury. The purpose of this study was to investigate the immediate effects of wearing shoes that can be tightened using wire and dial (SWD) compared to being barefoot and wearing lace shoes of the slip-on type (LSS) on the dynamic balance of the ankle after muscle fatigue. Twenty-two healthy individuals were enrolled in this study. Muscle fatigue in the ankle was induced using Biodex, an isokinetic equipment. The participants were randomly allocated to the barefoot, LSS, and SWD groups, and the dynamic balance immediately after inducing muscle fatigue in each participant was measured using BIORescue, the Y-Balance test, and the side-hop test. The results showed that after inducing ankle muscle fatigue, wearing SWD leads to a more significant increase in dynamic balance than barefoot and wearing LSS (p < 0.05). Hence, to improve the dynamic balance of the ankle after muscle fatigue, wearing SWD is suggested as it allows the tightening of the ankle and dorsum of the foot using the wire and dial.


2008 ◽  
Vol 53 (2) ◽  
Author(s):  
M Syczewska ◽  
B Dembowska-Bagińska ◽  
M Perek-Polnik ◽  
M Kalinowska ◽  
D Perek

2019 ◽  
Vol 121 (2) ◽  
pp. 690-700 ◽  
Author(s):  
Chesney E. Craig ◽  
Michail Doumas

We investigated whether postural aftereffects witnessed during transitions from a moving to a stable support are accompanied by a delayed perception of platform stabilization in older adults, in two experiments. In experiment 1, postural sway and muscle cocontraction were assessed in 11 healthy young, 11 healthy older, and 11 fall-prone older adults during blindfolded stance on a fixed platform, followed by a sway-referenced platform and then by a fixed platform again. The sway-referenced platform was more compliant for young adults, to induce similar levels of postural sway in both age groups. Participants were asked to press a button whenever they perceived that the platform had stopped moving. Both older groups showed significantly larger and longer postural sway aftereffects during platform stabilization compared with young adults, which were pronounced in fall-prone older adults. In both older groups elevated muscle cocontraction aftereffect was also witnessed. Importantly, these aftereffects were accompanied by an illusory perception of prolonged platform movement. After this, experiment 2 examined whether this illusory perception was a robust age effect or an experimental confound due to greater surface compliance in young adults, which could create a larger perceptual discrepancy between moving and stable conditions. Despite exposure to the same surface compliance levels during sway-reference, the perceptual illusion was maintained in experiment 2 in a new group of 14 healthy older adults compared with 11 young adults. In both studies, older adults took five times longer than young adults to perceive platform stabilization. This supports that sensory reweighting is inefficient in older adults. NEW & NOTEWORTHY This is the first paper to show that postural sway aftereffects witnessed in older adults after platform stabilization may be due to a perceptual illusion of platform movement. Surprisingly, in both experiments presented it took older adults five times longer than young adults to perceive platform stabilization. This supports a hypothesis of less efficient sensory reintegration in this age group, which may delay the formation of an accurate postural percept.


2013 ◽  
Vol 48 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Styliani I. Spiliopoulou ◽  
Ioannis G. Amiridis ◽  
Georgios Tsigganos ◽  
Vassilia Hatzitaki

Context: Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. Objective: To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. Intervention(s): The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91–16.3g). The control group did not participate in any form of exercise over the 9-week period. Main Outcome Measure(s): We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. Results: After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P &lt; .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus longus increased during the sharpened tandem (P = .001) and 1-legged tasks (P = .007). No changes were seen in the control group for any measures. Conclusions: The SAV training could enhance ankle muscle strength and reduce postural sway during static balance performance. The reduction in mediolateral sway could be associated with the greater use of ankle evertors due to their strength improvement.


1993 ◽  
Vol 9 (3) ◽  
pp. 191-201 ◽  
Author(s):  
Thomas M. Lundin ◽  
Jon W. Feuerbach ◽  
Mark D. Grabiner

The purpose of this study was to determine the effect of plantar flexor and dorsiflexor fatigue on postural sway amplitude during unilateral, or one-legged, stance. It was hypothesized that plantar flexor and dorsiflexor fatigue would increase unilateral postural sway amplitude. Eight uninjured male subjects participated in pre- and postfatigue unilateral stability tests. Selected parameters describing medial-lateral (ML) and anterior-posterior (AP) postural sway were measured on a Chattecx Balance System before and after an isokinetic fatigue protocol. The fatigue protocol resulted in a significant increase in ML postural sway amplitude (p< 0.05) and an increase in AP sway amplitude (p= 0.065). Previously, links have been established between increased postural sway amplitude and ankle joint injury. Thus, fatigue of the plantar flexors and dorsiflexors, which increased postural sway amplitude, may render the ankle joint susceptible to injury. Induced ankle muscle fatigue may represent a valid paradigm to study the causes of traumatic ankle joint injury.


Sign in / Sign up

Export Citation Format

Share Document