scholarly journals Training and Detraining Effects Following a Static Stretching Program on Medial Gastrocnemius Passive Properties

2021 ◽  
Vol 12 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Kaoru Yahata ◽  
Shigeru Sato ◽  
Ryosuke Kiyono ◽  
Riku Yoshida ◽  
...  

A stretching intervention program is performed to maintain and improve range of motion (ROM) in sports and rehabilitation settings. However, there is no consensus on the effects of stretching programs on muscle stiffness, likely due to short stretching durations used in each session. Therefore, a longer stretching exercise session may be required to decrease muscle stiffness in the long-term. Moreover, until now, the retention effect (detraining) of such an intervention program is not clear yet. The purpose of this study was to investigate the training (5-week) and detraining effects (5-week) of a high-volume stretching intervention on ankle dorsiflexion ROM (DF ROM) and medial gastrocnemius muscle stiffness. Fifteen males participated in this study and the plantarflexors of the dominant limb were evaluated. Static stretching intervention was performed using a stretching board for 1,800 s at 2 days per week for 5 weeks. DF ROM was assessed, and muscle stiffness was calculated from passive torque and muscle elongation during passive dorsiflexion test. The results showed significant changes in DF ROM and muscle stiffness after the stretching intervention program, but the values returned to baseline after the detraining period. Our results indicate that high-volume stretching intervention (3,600 s per week) may be beneficial for DF ROM and muscle stiffness, but the training effects are dismissed after a detraining period with the same duration of the intervention.

Neuroscience ◽  
1981 ◽  
Vol 6 (4) ◽  
pp. 725-739 ◽  
Author(s):  
R.F. Mayer ◽  
R.E. Burke ◽  
J. Toop ◽  
J.A. Hodgson ◽  
K. Kanda ◽  
...  

2015 ◽  
Vol 24 (3) ◽  
pp. 286-292 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Tome Ikezoe ◽  
Takahiro Tokugawa ◽  
Noriaki Ichihashi

Context:Hold–relax stretching (HRS) and static stretching (SS) are commonly used to increase joint range of motion (ROM) and decrease muscle stiffness. However, whether there are differences between acute effects of HRS and SS on end ROM, passive torque, and muscle stiffness is unclear. In addition, any differences between the mechanisms by which HRS and SS lead to an increase in end ROM are unclear.Objective:To compare the acute effects of HRS and SS on the passive properties of the gastrocnemius muscle–tendon unit (MTU), end ROM, passive torque, and muscle stiffness in vivo and to investigate the factors involved in increasing end ROM.Design:Crossover experimental design.Participants:30 healthy men (21.7 ± 1.2 y) with no history of neuromuscular disease or musculoskeletal injury involving the lower limbs.Intervention:Both HRS and SS of 30 s were repeated 4 times, lasting a total of 2 min.Main Outcome Measures:End ROM, passive torque, and muscle stiffness were measured during passive ankle dorsiflexion using a dynamometer and ultrasonography before and immediately after HRS and SS.Results:The results showed that end ROM and passive torque at end ROM significantly increased immediately after both HRS and SS, whereas muscle stiffness significantly decreased. In addition, the percentage change in passive torque at end ROM on use of the HRS technique was significantly higher than that after use of the SS technique. However, the percentage change in muscle stiffness after SS was significantly higher than that with HRS.Conclusion:These results suggest that both HRS and SS can effectively decrease muscle stiffness of the gastrocnemius MTU and that HRS induces a change in the passive torque at end ROM—ie, sensory perception—rather than changing muscle stiffness.


Healthcare ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 80
Author(s):  
Masatoshi Nakamura ◽  
Ryosuke Kiyono ◽  
Shigeru Sato ◽  
Kaoru Yahata ◽  
Taizan Fukaya ◽  
...  

Background: Previous studies suggest that the capacity for rapid force production of ankle plantar flexors is essential for the prevention of falls in the elderly. In healthy young adults, there were significant associations between rate of force development and muscle stiffness measured by shear wave elastography. However, there has been no study investigating the association of rate of force development with shear elastic modulus in older adults. Methods: The muscle strength and shear elastic modulus of the medial gastrocnemius muscle in both legs were measured in 17 elderly men and 10 elderly women (mean ± SD; 70.7 ± 4.1 years; 160.6 ± 8.0 cm; 58.7 ± 9.5 kg). We investigated the rate of force development of plantar flexors and shear elastic modulus of medial gastrocnemius muscle using by shear wave elastography. Results: Our results showed that there were no significant associations between normalized rate of force development and shear elastic modulus of medial gastrocnemius muscle. Conclusion: This suggests that the capacity of rapid force production could be related not to muscle stiffness of the medial gastrocnemius muscle, but to neuromuscular function in older individuals.


2014 ◽  
Vol 117 (9) ◽  
pp. 1020-1026 ◽  
Author(s):  
Keitaro Kubo

The aims of this study were to 1) directly assess active muscle stiffness according to actual length changes in muscle fibers (fascicles) during short range stretching; and 2) compare actual measured active muscle and tendon stiffness using ultrasonography with the stiffness of active (i.e., muscle) and passive (i.e., tendon) parts in series elastic component of plantar flexors using the alpha method. Twenty-four healthy men volunteered for this study. Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions [10, 30, 50, 70, and 90% maximal voluntary contractions (MVC)]. Using the variables measured during this fast stretch experiment, the stiffness of active (i.e., muscle) and passive (i.e., tendon) parts in plantar flexors was assessed using alpha method. Tendon stiffness was determined during isometric plantar flexion by ultrasonography. Active muscle stiffness increased with the exerted torque levels. At 30, 50, 70, and 90% MVC, there were no significant correlations between muscle stiffness using ultrasonography and stiffness of active part (i.e., muscle) by alpha method, although this relationship at 10% MVC was significant ( r = 0.552, P = 0.005). In addition, no correlation was noted in tendon stiffness between the two different methods ( r = 0.226, P = 0.209). The present study demonstrated that ultrasonography could quantified active muscle stiffness in vivo. Furthermore, active muscle stiffness and tendon stiffness using ultrasonography were not related to active (i.e., muscle) or passive (i.e., tendon) stiffness in series elastic component of plantar flexors by alpha method.


Sign in / Sign up

Export Citation Format

Share Document