scholarly journals Eph-ephrin Signaling Affects Eye Lens Fiber Cell Intracellular Voltage and Membrane Conductance

2021 ◽  
Vol 12 ◽  
Author(s):  
Catherine Cheng ◽  
Junyuan Gao ◽  
Xiurong Sun ◽  
Richard T. Mathias

The avascular eye lens generates its own microcirculation that is required for maintaining lifelong lens transparency. The microcirculation relies on sodium ion flux, an extensive network of gap junction (GJ) plaques between lens fiber cells and transmembrane water channels. Disruption of connexin proteins, the building blocks of GJs, or aquaporins, which make up water and adhesion channels, lead to lens opacification or cataracts. Recent studies have revealed that disruption of Eph-ephrin signaling, in particular the receptor EphA2 and the ligand ephrin-A5, in humans and mice lead to congenital and age-related cataracts. We investigated whether changes in lens transparency in EphA2 or ephrin-A5 knockout (–/–) mice is related to changes in GJ coupling and lens fluid and ion homeostasis. Immunostaining revealed changes in connexin 50 (Cx50) subcellular localization in EphA2–/– peripheral lens fibers and alteration in aquaporin 0 (Aqp0) staining patterns in ephrin-A5–/– and EphA2–/– inner mature fiber cells. Surprisingly, there was no obvious change in GJ coupling in knockout lenses. However, there were changes in fiber cell membrane conductance and intracellular voltage in knockout lenses from 3-month-old mice. These knockout lenses displayed decreased conductance of mature fiber membranes and were hyperpolarized compared to control lenses. This is the first demonstration that the membrane conductance of lens fibers can be regulated. Together these data suggest that EphA2 may be needed for normal Cx50 localization to the cell membrane and that conductance of lens fiber cells requires normal Eph-ephrin signaling and water channel localization.

2016 ◽  
Vol 310 (2) ◽  
pp. C115-C126 ◽  
Author(s):  
Rupalatha Maddala ◽  
Mark Walters ◽  
Peter J. Brophy ◽  
Vann Bennett ◽  
Ponugoti V. Rao

Periaxin (Prx), a PDZ domain protein expressed preferentially in myelinating Schwann cells and lens fibers, plays a key role in membrane scaffolding and cytoarchitecture. Little is known, however, about how Prx is anchored to the plasma membrane. Here we report that ankyrin-B (AnkB), a well-characterized adaptor protein involved in linking the spectrin-actin cytoskeleton to integral membrane proteins, is required for membrane association of Prx in lens fibers and colocalizes with Prx in hexagonal fiber cells. Under AnkB haploinsufficiency, Prx accumulates in the soluble fraction with a concomitant loss from the membrane-enriched fraction of mouse lenses. Moreover, AnkB haploinsufficiency induced age-dependent disruptions in fiber cell hexagonal geometry and radial alignment and decreased compressive stiffness in mouse lenses parallel to the changes observed in Prx null mouse lens. Both AnkB- and Prx-deficient mice exhibit disruptions in membrane organization of the spectrin-actin network and the dystrophin-glycoprotein complex in lens fiber cells. Taken together, these observations reveal that AnkB is required for Prx membrane anchoring and for maintenance of lens fiber cell hexagonal geometry, membrane skeleton organization, and biomechanics.


Author(s):  
Camillo Peracchia ◽  
Stephen J. Girsch

The fiber cells of eye lens communicate directly with each other by exchanging ions, dyes and metabolites. In most tissues this type of communication (cell coupling) is mediated by gap junctions. In the lens, the fiber cells are extensively interconnected by junctions. However, lens junctions, although morphologically similar to gap junctions, differ from them in a number of structural, biochemical and immunological features. Like gap junctions, lens junctions are regions of close cell-to-cell apposition. Unlike gap junctions, however, the extracellular gap is apparently absent in lens junctions, such that their thickness is approximately 2 nm smaller than that of typical gap junctions (Fig. 1,c). In freeze-fracture replicas, the particles of control lens junctions are more loosely packed than those of typical gap junctions (Fig. 1,a) and crystallize, when exposed to uncoupling agents such as Ca++, or H+, into pseudo-hexagonal, rhombic (Fig. 1,b) and orthogonal arrays with a particle-to-particle spacing of 6.5 nm. Because of these differences, questions have been raised about the interpretation of the lens junctions as communicating junctions, in spite of the fact that they are the only junctions interlinking lens fiber cells.


2001 ◽  
Vol 281 (6) ◽  
pp. R1994-R2003 ◽  
Author(s):  
Leila V. Virkki ◽  
Gordon J. Cooper ◽  
Walter F. Boron

The major intrinsic protein (MIP) of lens fiber cells is a member of the aquaporin (AQP) water channel family. The protein is expressed at very high levels in lens fiber cells, but its physiological function is unclear. By homology to known AQPs, we have cloned a full-length cDNA encoding an MIP from the lens of killifish ( Fundulus heteroclitus). The predicted protein (263 amino acids; GenBank accession no. AF191906 ) shows 77% identity to amphibian MIPs, 70% identity to mammalian MIPs, and 46% identity to mammalian AQP1. Expression of MIPfun in Xenopus laevis oocytes causes an ∼40-fold increase in oocyte water permeability. This stimulation is comparable to that seen with AQP1 and substantially larger than that seen with other MIPs. The mercurials HgCl2 and p-chloromercuribenzenesulfonate inhibit the water permeability of MIPfun by ∼25%. MIPfun is not permeable to glycerol, urea, or formic acid but is weakly permeable to CO2.


1992 ◽  
Vol 103 (1) ◽  
pp. 245-257 ◽  
Author(s):  
E. Tenbroek ◽  
M. Arneson ◽  
L. Jarvis ◽  
C. Louis

MP20 is an intrinsic membrane protein previously identified in mammalian lens fiber cells. To identify a possible role for this protein in the lens, the distribution of MP20 and connexin46 has now been examined. Western immunoblotting with an anti-peptide antibody generated to the C-terminal 8 amino acids of MP20 confirmed the presence of this protein in the lens of several different mammalian species. A monoclonal antibody 5H1 was prepared that, in Western blots of bovine lesn membranes, recognized the same component as an antibody to rat connexin46 (Cx46). The apparent molecular mass of this component decreased from 59 kDa to 55 kDa following treatment of lens membranes with alkaline phosphatase. A monoclonal antibody to connexin-related MP70 recognized a 70 kDa component in bovine lens membranes confirming the presence of these two different connexin proteins in bovine lens membranes. To localize MP20 and Cx46 in the bovine lens membrane, lens fiber cell bundles were immunofluorescently labeled with both the MP20 antibody, and the monoclonal antibody to Cx46. Cx46 was identified in large plaques on the broad faces of the lens fiber cells throughout the outer 1 mm of the lens cortex. MP20 colocalized with Cx46 only in a restricted area 0.5 mm to 1.0 mm into the lens. In other regions of the lens, MP20 appeared more diffusely distributed over the fiber cell surface, although apparently concentrated in the ball-and-socket regions at the corners of the narrow side of the inner cortical lens fiber cells. These inner cortical regions were devoid of Cx46. A difference in distribution of these two proteins was confirmed in studies of immunofluorescently labeled lens cryosections. Furthermore, immunogold electron microscopy of purified lens membranes identified MP20 in both junctional regions (with Cx46) and in single membranes. These results provide evidence for a role for MP20 in mammalian lens fiber cell junctional formation or organization.


2020 ◽  
Vol 29 (12) ◽  
pp. 2076-2097 ◽  
Author(s):  
Carrie E Barnum ◽  
Salma Al Saai ◽  
Shaili D Patel ◽  
Catherine Cheng ◽  
Deepti Anand ◽  
...  

Abstract Mutations of the RNA granule component TDRD7 (OMIM: 611258) cause pediatric cataract. We applied an integrated approach to uncover the molecular pathology of cataract in Tdrd7−/− mice. Early postnatal Tdrd7−/− animals precipitously develop cataract suggesting a global-level breakdown/misregulation of key cellular processes. High-throughput RNA sequencing integrated with iSyTE-bioinformatics analysis identified the molecular chaperone and cytoskeletal modulator, HSPB1, among high-priority downregulated candidates in Tdrd7−/− lens. A protein fluorescence two-dimensional difference in-gel electrophoresis (2D-DIGE)-coupled mass spectrometry screen also identified HSPB1 downregulation, offering independent support for its importance to Tdrd7−/− cataractogenesis. Lens fiber cells normally undergo nuclear degradation for transparency, posing a challenge: how is their cell morphology, also critical for transparency, controlled post-nuclear degradation? HSPB1 functions in cytoskeletal maintenance, and its reduction in Tdrd7−/− lens precedes cataract, suggesting cytoskeletal defects may contribute to Tdrd7−/− cataract. In agreement, scanning electron microscopy (SEM) revealed abnormal fiber cell morphology in Tdrd7−/− lenses. Further, abnormal phalloidin and wheat germ agglutinin (WGA) staining of Tdrd7−/− fiber cells, particularly those exhibiting nuclear degradation, reveals distinct regulatory mechanisms control F-actin cytoskeletal and/or membrane maintenance in post-organelle degradation maturation stage fiber cells. Indeed, RNA immunoprecipitation identified Hspb1 mRNA in wild-type lens lysate TDRD7-pulldowns, and single-molecule RNA imaging showed co-localization of TDRD7 protein with cytoplasmic Hspb1 mRNA in differentiating fiber cells, suggesting that TDRD7–ribonucleoprotein complexes may be involved in optimal buildup of key factors. Finally, Hspb1 knockdown in Xenopus causes eye/lens defects. Together, these data uncover TDRD7’s novel upstream role in elevation of stress-responsive chaperones for cytoskeletal maintenance in post-nuclear degradation lens fiber cells, perturbation of which causes early-onset cataracts.


2010 ◽  
Vol 338 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Yuki Sugiyama ◽  
Richard J.W. Stump ◽  
Anke Nguyen ◽  
Li Wen ◽  
Yongjuan Chen ◽  
...  

2020 ◽  
Vol 219 (12) ◽  
Author(s):  
Jie Liu ◽  
Manuel A. Riquelme ◽  
Zhen Li ◽  
Yuting Li ◽  
Yuxin Tong ◽  
...  

The delivery of glucose and antioxidants is vital to maintain homeostasis and lens transparency. Here, we report a new mechanism whereby mechanically activated connexin (Cx) hemichannels serve as a transport portal for delivering glucose and glutathione (GSH). Integrin α6β1 in outer cortical lens fiber activated by fluid flow shear stress (FFSS) induced opening of hemichannels. Inhibition of α6 activation prevented hemichannel opening as well as glucose and GSH uptake. The activation of integrin β1, a heterodimeric partner of α6 in the absence of FFSS, increased Cx50 hemichannel opening. Hemichannel activation by FFSS depended on the interaction of integrin α6 and Cx50 C-terminal domain. Moreover, hemichannels in nuclear fiber were unresponsive owing to Cx50 truncation. Taken together, these results show that mechanically activated α6β1 integrin in outer cortical lens fibers leads to opening of hemichannels, which transport glucose and GSH into cortical lens fibers. This study unveils a new transport mechanism that maintains metabolic and antioxidative function of the lens.


2020 ◽  
Vol 117 (13) ◽  
pp. 7245-7254 ◽  
Author(s):  
Ming Shao ◽  
Tong Lu ◽  
Chong Zhang ◽  
Yi-Zhuang Zhang ◽  
Shu-Hui Kong ◽  
...  

Lens transparency is established by abundant accumulation of crystallin proteins and loss of organelles in the fiber cells. It requires an efficient translation of lens messenger RNAs (mRNAs) to overcome the progressively reduced transcriptional activity that results from denucleation. Inappropriate regulation of this process impairs lens differentiation and causes cataract formation. However, the regulatory mechanism promoting protein synthesis from lens-expressed mRNAs remains unclear. Here we show that in zebrafish, the RNA-binding protein Rbm24 is critically required for the accumulation of crystallin proteins and terminal differentiation of lens fiber cells. In the developing lens, Rbm24 binds to a wide spectrum of lens-specific mRNAs through the RNA recognition motif and interacts with cytoplasmic polyadenylation element-binding protein (Cpeb1b) and cytoplasmic poly(A)-binding protein (Pabpc1l) through the C-terminal region. Loss of Rbm24 reduces the stability of a subset of lens mRNAs encoding heat shock proteins and shortens the poly(A) tail length of crystallin mRNAs encoding lens structural components, thereby preventing their translation into functional proteins. This severely impairs lens transparency and results in blindness. Consistent with its highly conserved expression in differentiating lens fiber cells, the findings suggest that vertebrate Rbm24 represents a key regulator of cytoplasmic polyadenylation and plays an essential role in the posttranscriptional control of lens development.


Sign in / Sign up

Export Citation Format

Share Document