Cloning and functional expression of an MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens

2001 ◽  
Vol 281 (6) ◽  
pp. R1994-R2003 ◽  
Author(s):  
Leila V. Virkki ◽  
Gordon J. Cooper ◽  
Walter F. Boron

The major intrinsic protein (MIP) of lens fiber cells is a member of the aquaporin (AQP) water channel family. The protein is expressed at very high levels in lens fiber cells, but its physiological function is unclear. By homology to known AQPs, we have cloned a full-length cDNA encoding an MIP from the lens of killifish ( Fundulus heteroclitus). The predicted protein (263 amino acids; GenBank accession no. AF191906 ) shows 77% identity to amphibian MIPs, 70% identity to mammalian MIPs, and 46% identity to mammalian AQP1. Expression of MIPfun in Xenopus laevis oocytes causes an ∼40-fold increase in oocyte water permeability. This stimulation is comparable to that seen with AQP1 and substantially larger than that seen with other MIPs. The mercurials HgCl2 and p-chloromercuribenzenesulfonate inhibit the water permeability of MIPfun by ∼25%. MIPfun is not permeable to glycerol, urea, or formic acid but is weakly permeable to CO2.

2018 ◽  
Vol 314 (2) ◽  
pp. C191-C201 ◽  
Author(s):  
Rosica S. Petrova ◽  
Kevin F. Webb ◽  
Ehsan Vaghefi ◽  
Kerry Walker ◽  
Kevin L. Schey ◽  
...  

Although the functionality of the lens water channels aquaporin 1 (AQP1; epithelium) and AQP0 (fiber cells) is well established, less is known about the role of AQP5 in the lens. Since in other tissues AQP5 functions as a regulated water channel with a water permeability (PH2O) some 20 times higher than AQP0, AQP5 could function to modulate PH2O in lens fiber cells. To test this possibility, a fluorescence dye dilution assay was used to calculate the relative PH2O of epithelial cells and fiber membrane vesicles isolated from either the mouse or rat lens, in the absence and presence of HgCl2, an inhibitor of AQP1 and AQP5. Immunolabeling of lens sections and fiber membrane vesicles from mouse and rat lenses revealed differences in the subcellular distributions of AQP5 in the outer cortex between species, with AQP5 being predominantly membranous in the mouse but predominantly cytoplasmic in the rat. In contrast, AQP0 labeling was always membranous in both species. This species-specific heterogeneity in AQP5 membrane localization was mirrored in measurements of PH2O, with only fiber membrane vesicles isolated from the mouse lens, exhibiting a significant Hg2+-sensitive contribution to PH2O. When rat lenses were first organ cultured, immunolabeling revealed an insertion of AQP5 into cortical fiber cells, and a significant increase in Hg2+-sensitive PH2O was detected in membrane vesicles. Our results show that AQP5 forms functional water channels in the rodent lens, and they suggest that dynamic membrane insertion of AQP5 may regulate water fluxes in the lens by modulating PH2O in the outer cortex.


2002 ◽  
Vol 22 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Tomoko Ota ◽  
Michio Kuwahara ◽  
Shuling Fan ◽  
Yoshio Terada ◽  
Takashi Akiba ◽  
...  

Objective The purpose of this study was to determine the localization of the aquaporin-1 (AQP1) water channel in peritoneal tissues and the effect of hyperosmolality on the peritoneal expression and function of AQP1. Methods Immunohistochemical localization of AQP1 was identified in rat peritoneal tissues. Cultured rat peritoneal mesothelial cells (RPMCs) were exposed to hyperosmolality by adding 4% glucose to the culture medium. After 1 hour, 4 hours, 24 hours, and 48 hours, AQP1 was identified by semiquantitative immunoblot and immunocytochemistry. Osmotic water permeability was measured using a light-scattering method. Results Immunohistochemistry of rat peritoneal tissues showed the presence of AQP1 in mesothelial cells, venular endothelial cells, and capillary endothelial cells, but not in arteriole and interstitial cells. Semiquantitative immunoblot revealed that exposure to hyperosmolality significantly increased AQP1 expression after 24 hours in whole RPMC lysates (3.3-fold at 24 hours and 3.9-fold at 48 hours). Consistent with the immunoblot, osmotic water permeability of RPMC was augmented 1.7-fold and 2.7-fold after 1 hour and 24 hours, respectively, in a hyperosmotic environment. In RPMC membrane fractions, AQP1 expression was significantly increased after 1 hour of exposure to hyperosmolality (3.9-fold at 1 hour, 7.1-fold at 4 hours, and 8.7-fold at 24 hours). Immunocytochemistry of RPMCs showed that AQP1 was gradually redistributed from the perinuclear area to the peripheral cytoplasm, and then to the plasma membrane after a 1-hour hyperosmotic challenge, suggesting hyperosmolality-induced translocation of AQP1. Upregulation of AQP1 was also observed in the omentum of rats loaded intraperitoneally with hyperosmotic dialysate every day for 10 weeks. Conclusion AQP1 is widely distributed in the peritoneal cavity and may provide the major aqueous pathway across the peritoneal barrier. In addition, our findings suggested that hyperosmolality increases AQP1-dependent water permeability in peritoneal tissues by regulating the translocation and synthesis of AQP1 protein.


1995 ◽  
Vol 269 (1) ◽  
pp. F70-F77 ◽  
Author(s):  
C. L. Chou ◽  
S. R. DiGiovanni ◽  
R. Mejia ◽  
S. Nielsen ◽  
M. A. Knepper

Circulating concentrations of oxytocin increase to 10-40 pM in rats in response to osmotic stimuli, suggesting that oxytocin could play a role in regulation of water balance. The present studies tested whether oxytocin at such concentrations increases osmotic water permeability (Pf) in isolated perfused terminal inner medullary collecting ducts (IMCD). In IMCD segments from Sprague-Dawley rats, 20 pM oxytocin added to the peritubular bath caused a two- to threefold increase in Pf, whereas 200 pM oxytocin increased Pf by five- to sixfold (n = 8, P < 0.01). IMCD from Brattleboro rats, which manifest central diabetes insipidus, exhibited a 2.8-fold increase in Pf in response to 20 pM oxytocin and a 4.7-fold increase in response to 200 pM oxytocin. However, in Brattleboro rats, the response to 20 pM oxytocin was dependent on prior water restriction of the rats. Immunoblotting showed no change in the expression of the aquaporin-CD water channel in Brattleboro rats in response to water restriction. Nevertheless, immunofluorescence studies of inner medullary tissue from Brattleboro rats revealed a marked redistribution of the aquaporin-CD water channels to a predominantly apical and subapical localization in IMCD cells in response to water restriction, similar to the redistribution seen in response to vasopressin. Mathematical modeling studies revealed that the measured increase in Pf in response to oxytocin is sufficient to generate a concentrated urine. We conclude that oxytocin can function physiologically as an antidiuretic hormone, mimicking the short-term action of vasopressin on water permeability, albeit with somewhat lower potency.


2009 ◽  
Vol 296 (4) ◽  
pp. R1041-R1052 ◽  
Author(s):  
Angèle Tingaud-Sequeira ◽  
Cinta Zapater ◽  
François Chauvigné ◽  
David Otero ◽  
Joan Cerdà

Embryos of the marine killifish Fundulus heteroclitus are adapted to survive aerially. However, it is unknown if they are able to control development under dehydration conditions. Here, we show that air-exposed blastula embryos under saturated relative humidity were able to stimulate development, and hence the time of hatching was advanced with respect to embryos continuously immersed in seawater. Embryos exposed to air at later developmental stages did not hatch until water was added, while development was not arrested. Air-exposed embryos avoided dehydration probably because of their thickened egg envelope, although it suffered significant evaporative water loss. The potential role of aquaporins as part of the embryo response to dehydration was investigated by cloning the aquaporin-0 (FhAqp0), -1a (FhAqp1a), and -3 (FhAqp3) cDNAs. Functional expression in Xenopus laevis oocytes showed that FhaAqp1a was a water-selective channel, whereas FhAqp3 was permeable to water, glycerol, and urea. Expression of fhaqp0 and fhaqp1a was prominent during organogenesis, and their mRNA levels were similar between water- and air-incubated embryos. However, fhaqp3 transcripts were highly and transiently accumulated during gastrulation, and the protein product was localized in the basolateral membrane of the enveloping epithelial cell layer and in the membrane of ingressing and migrating blastomers. Interestingly, both fhaqp3 transcripts and FhAqp3 polypeptides were downregulated in air-exposed embryos. These data demonstrate that killifish embryos respond adaptively to environmental desiccation by accelerating development and that embryos are able to transduce dehydration conditions into molecular responses. The reduced synthesis of FhAqp3 may be one of these mechanisms to regulate water and/or solute transport in the embryo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Catherine Cheng ◽  
Junyuan Gao ◽  
Xiurong Sun ◽  
Richard T. Mathias

The avascular eye lens generates its own microcirculation that is required for maintaining lifelong lens transparency. The microcirculation relies on sodium ion flux, an extensive network of gap junction (GJ) plaques between lens fiber cells and transmembrane water channels. Disruption of connexin proteins, the building blocks of GJs, or aquaporins, which make up water and adhesion channels, lead to lens opacification or cataracts. Recent studies have revealed that disruption of Eph-ephrin signaling, in particular the receptor EphA2 and the ligand ephrin-A5, in humans and mice lead to congenital and age-related cataracts. We investigated whether changes in lens transparency in EphA2 or ephrin-A5 knockout (–/–) mice is related to changes in GJ coupling and lens fluid and ion homeostasis. Immunostaining revealed changes in connexin 50 (Cx50) subcellular localization in EphA2–/– peripheral lens fibers and alteration in aquaporin 0 (Aqp0) staining patterns in ephrin-A5–/– and EphA2–/– inner mature fiber cells. Surprisingly, there was no obvious change in GJ coupling in knockout lenses. However, there were changes in fiber cell membrane conductance and intracellular voltage in knockout lenses from 3-month-old mice. These knockout lenses displayed decreased conductance of mature fiber membranes and were hyperpolarized compared to control lenses. This is the first demonstration that the membrane conductance of lens fibers can be regulated. Together these data suggest that EphA2 may be needed for normal Cx50 localization to the cell membrane and that conductance of lens fiber cells requires normal Eph-ephrin signaling and water channel localization.


1999 ◽  
Vol 181 (14) ◽  
pp. 4193-4197 ◽  
Author(s):  
Christian Delamarche ◽  
Daniel Thomas ◽  
Jean-Paul Rolland ◽  
Alexandrine Froger ◽  
Jean Gouranton ◽  
...  

ABSTRACT Transport of water across the plasma membrane is a fundamental process occurring in all living organisms. In bacteria, osmotic movement of water across the cytoplasmic membrane is needed to maintain cellular turgor; however, the molecular mechanisms of this process are poorly defined. Involvement of aquaporin water channels in bacterial water permeability was suggested by the recent discovery of the aquaporin gene, aqpZ, in Escherichia coli. By employing cryoelectron microscopy to compare E. coli cells containing (AqpZ+) and lacking (AqpZ−) aquaporin, we show that the AqpZ water channel rapidly mediates large water fluxes in response to sudden changes in extracellular osmolarity. These findings (i) demonstrate for the first time functional expression of a prokaryotic water channel, (ii) evidence the bidirectional water channel feature of AqpZ, (iii) document a role for AqpZ in bacterial osmoregulation, and (iv) define a suitable model for studying the physiology of prokaryotic water transport.


Author(s):  
Zihe Huo ◽  
Mihai Lomora ◽  
Urs Kym ◽  
Cornelia Palivan ◽  
Stefan G. Holland-Cunz ◽  
...  

The water channel aquaporin 1 (AQP1) has been implicated in tumor progression and metastasis. It is hypothesized that AQP1 expression can facilitate the transmembrane water transport leading to changes in cell structure that promote migration. Its impact in neuroblastoma has not been addressed so far. The objectives of this study have been to determine whether AQP1 expression in neuroblastoma is dependent on hypoxia, to demonstrate whether AQP1 is functionally relevant for migration, and to further define AQP1-dependent properties of the migrating cells. This was determined by investigating the reaction of neuroblastoma cell lines, particularly SH-SY5Y, Kelly, SH-EP Tet-21/N and SK-N-BE(2)-M17 to hypoxia, quantitating the AQP1-related water permeability by stopped-flow spectroscopy, and studying the migration-related properties of the cells in a modified transwell assay. We find that AQP1 expression in neuroblastoma cells is up-regulated by hypoxic conditions, and that increased AQP1 expression enabled the cells to form a phenotype which is associated with migratory properties and increased cell agility. This suggests that the hypoxic tumor microenvironment is the trigger for some tumor cells to transition to a migratory phenotype. We demonstrate that migrating tumor cell express elevated AQP1 levels and a hypoxic biochemical phenotype. Our experiments strongly suggest that elevated AQP1 might be a key driver in transitioning stable tumor cells to migrating tumor cells in a hypoxic microenvironment.


2004 ◽  
Vol 287 (4) ◽  
pp. R915-R924 ◽  
Author(s):  
Y. Yang ◽  
Y. Cui ◽  
W. Wang ◽  
L. Zhang ◽  
L. Bufford ◽  
...  

Both mammals and birds can concentrate urine hyperosmotic to plasma via a countercurrent multiplier mechanism, although evolutionary lines leading to mammals and birds diverged at an early stage of tetrapod evolution. We reported earlier (Nishimura H, Koseki C, and Patel TB. Am J Physiol Regul Integr Comp Physiol 271: R1535–R1543, 1996) that arginine vasotocin (AVT; avian antidiuretic hormone) increases diffusional water permeability in the isolated, perfused medullary collecting duct (CD) of the quail kidney. In the present study, we have identified an aquaporin (AQP) 2 homolog water channel in the medullary cones of Japanese quail, Coturnix coturnix (qAQP2), by RT-PCR-based cloning techniques. A full-length cDNA contains an 822-bp open reading frame that encodes a 274-amino acid sequence with 75.5% identity to rat AQP2. The qAQP2 has six transmembrane domains, two asparagine-proline-alanine (NPA) sequences, and putative N-glycosylation (asparagine-124) and phosphorylation sites (serine-257) for cAMP-dependent protein kinase. qAQP2 is expressed in the membrane of Xenopus laevis oocytes and significantly increased its osmotic water permeability (Pf), inhibitable ( P < 0.01) by mercury chloride. qAQP2 mRNA (RT-PCR) was detected in the kidney; medullary mRNA levels were higher than cortical levels. qAQP2 protein that binds to rabbit anti-rat AQP2 antibody is present in the apical/subapical regions of both cortical and medullary CDs from normally hydrated quail, and the intensity of staining increased only in the medullary CDs after water deprivation or AVT treatment. The relative density of the ∼29-kDa protein band detected by immunoblot from the medullary cones was modestly higher in water-deprived/AVT-treated quail. The results suggest that 1) medullary CDs of quail kidneys express a mercury-sensitive functioning qAQP2 water channel, and 2) qAQP2 is at least partly regulated by an AVT-dependent mechanism. This is the first clear identification of AQP2 homolog in nonmammalian vertebrates.


2005 ◽  
Vol 288 (6) ◽  
pp. R1733-R1743 ◽  
Author(s):  
Anne-Sophie Martinez ◽  
Christopher P. Cutler ◽  
Gillian D. Wilson ◽  
Claire Phillips ◽  
Neil Hazon ◽  
...  

Complementary DNAs encoding homologs of the mammalian aquaglyceroporins (termed AQPe) and aquaporin-1 isoforms (termed AQP1) were isolated from the European eel. The AQP amino acid sequences share 35–54% identity with other known human AQPs. Although AQPe mRNA expression was approximately equivalent along the entire length of the gut, AQP1 expression was the highest in the posterior/rectal segment. Seawater (SW) acclimation increased AQP1 mRNA abundance by 5- and 17-fold in the anterior, 14- and 23-fold in the mid-, and 9- and 7-fold in the posterior/rectal gut regions of yellow and silver eels, respectively. SW acclimation had an effect on AQPe mRNA expression only in the midintestine of silver eels, where a small but significant 1.7-fold increase in abundance was measured. Western blots using an eel AQP1-specific antibody identified the presence of a major immunoreactive 28-kDa protein, primarily within the posterior/rectal segment. A 3-wk SW transfer induced an increase in AQP1 protein abundance in all intestinal segments, with the posterior/rectal region still expressing protein levels ∼40- and 8-fold higher than the anterior and midsegments, respectively. Strong AQP1 immunofluorescence was detected within the vascular endothelium in both freshwater (FW)- and SW-acclimated eels and in the epithelial apical brush border in the posterior/rectal gut regions of SW-acclimated eels. Cortisol infusion into FW eels had no effect on intestinal AQPe mRNA expression but induced increases in AQP1 mRNA and protein levels. These results provide evidence for the presence of a SW-induced and steroid-regulated AQP water channel pathway within the intestine of the European eel.


2013 ◽  
Vol 141 (3) ◽  
pp. 287-295 ◽  
Author(s):  
Karin L. Németh-Cahalan ◽  
Daniel M. Clemens ◽  
James E. Hall

Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens.


Sign in / Sign up

Export Citation Format

Share Document