fluid flow shear stress
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 0)

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3128
Author(s):  
Thomas R. Coughlin ◽  
Ali Sana ◽  
Kevin Voss ◽  
Abhilash Gadi ◽  
Upal Basu-Roy ◽  
...  

Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/physical surroundings and changes in these surroundings can affect their behavior. However, it is not well understood how OS cells specifically respond to fluid movement, or substrate stiffness—two stimuli of relevance in the tumor microenvironment. We used cells from spontaneous OS tumors in a mouse engineered to have a bone-specific knockout of pRb-1 and p53 in the osteoblast lineage. We silenced Sox2 (which regulates YAP) and tested the effect of fluid flow shear stress (FFSS) and substrate stiffness on YAP expression/activity—which was significantly reduced by loss of Sox2, but that effect was reversed by FFSS but not by substrate stiffness. Osteogenic gene expression was also reduced in the absence of Sox2 but again this was reversed by FFSS and remained largely unaffected by substrate stiffness. Thus we described the effect of two distinct stimuli on the mechanosensory and osteogenic profiles of OS cells. Taken together, these data suggest that modulation of fluid movement through, or stiffness levels within, OS tumors could represent a novel consideration in the development of new treatments to prevent their progression.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1253
Author(s):  
Tarak Srivastava ◽  
Daniel P. Heruth ◽  
R. Scott Duncan ◽  
Mohammad H. Rezaiekhaligh ◽  
Robert E. Garola ◽  
...  

Increased fluid flow shear stress (FFSS) in solitary kidney alters podocyte function in vivo. FFSS-treated cultured podocytes show upregulated AKT-GSK3β-β-catenin signaling. The present study was undertaken to confirm (i) the activation of β-catenin signaling in podocytes in vivo using unilaterally nephrectomized (UNX) TOPGAL mice with the β-galactosidase reporter gene for β-catenin activation, (ii) β-catenin translocation in FFSS-treated mouse podocytes, and (iii) β-catenin signaling using publicly available data from UNX mice. The UNX of TOPGAL mice resulted in glomerular hypertrophy and increased the mesangial matrix consistent with hemodynamic adaptation. Uninephrectomized TOPGAL mice showed an increased β-galactosidase expression at 4 weeks but not at 12 weeks, as assessed using immunofluorescence microscopy (p < 0.001 at 4 weeks; p = 0.16 at 12 weeks) and X-gal staining (p = 0.008 at 4 weeks; p = 0.65 at 12 weeks). Immunofluorescence microscopy showed a significant increase in phospho-β-catenin (Ser552, p = 0.005) at 4 weeks but not at 12 weeks (p = 0.935) following UNX, and the levels of phospho-β-catenin (Ser675) did not change. In vitro FFSS caused a sustained increase in the nuclear translocation of phospho-β-catenin (Ser552) but not phospho-β-catenin (Ser675) in podocytes. The bioinformatic analysis of the GEO dataset, #GSE53996, also identified β-catenin as a key upstream regulator. We conclude that transcription factor β-catenin mediates FFSS-induced podocyte (glomerular) injury in solitary kidney.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250741
Author(s):  
Yoshimasa Takafuji ◽  
Kohei Tatsumi ◽  
Naoyuki Kawao ◽  
Kiyotaka Okada ◽  
Masafumi Muratani ◽  
...  

The interactions between skeletal muscle and bone have been recently noted, and muscle-derived humoral factors related to bone metabolism play crucial roles in the muscle/bone relationships. We previously reported that extracellular vesicles from mouse muscle C2C12 cells (Myo-EVs) suppress osteoclast formation in mice. Although mechanical stress is included in extrinsic factors which are important for both muscle and bone, the detailed roles of mechanical stress in the muscle/bone interactions have still remained unknown. In present study, we examined the effects of fluid flow shear stress (FFSS) to C2C12 cells on the physiological actions of muscle cell-derived EV. Applying FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in mouse bone marrow cells in the presence of receptor activator nuclear factor κB ligand (RANKL). Moreover, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed mitochondria biogenesis genes during osteoclast formation with RANKL treatment. In addition, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in Raw264.7 cells in the presence of RANKL. Small RNA-seq-analysis showed that FFSS elevated the expression of miR196a-5p and miR155-5p with the suppressive actions of osteoclast formation and low expression in mouse bone cells. On the other hand, muscle cell-derived EVs with or without FFSS to C2C12 cells did not affect the expression of osteogenic genes, alkaline phosphatase activity and mineralization in mouse osteoblasts. In conclusion, we first showed that FFSS to C2C12 cells enhances the suppressive effects of muscle cell-derived EVs on osteoclast formation in mouse cells. Muscle cell-derived EVs might be partly involved in the effects of mechanical stress on the muscle/bone relationships.


2020 ◽  
Vol 219 (12) ◽  
Author(s):  
Jie Liu ◽  
Manuel A. Riquelme ◽  
Zhen Li ◽  
Yuting Li ◽  
Yuxin Tong ◽  
...  

The delivery of glucose and antioxidants is vital to maintain homeostasis and lens transparency. Here, we report a new mechanism whereby mechanically activated connexin (Cx) hemichannels serve as a transport portal for delivering glucose and glutathione (GSH). Integrin α6β1 in outer cortical lens fiber activated by fluid flow shear stress (FFSS) induced opening of hemichannels. Inhibition of α6 activation prevented hemichannel opening as well as glucose and GSH uptake. The activation of integrin β1, a heterodimeric partner of α6 in the absence of FFSS, increased Cx50 hemichannel opening. Hemichannel activation by FFSS depended on the interaction of integrin α6 and Cx50 C-terminal domain. Moreover, hemichannels in nuclear fiber were unresponsive owing to Cx50 truncation. Taken together, these results show that mechanically activated α6β1 integrin in outer cortical lens fibers leads to opening of hemichannels, which transport glucose and GSH into cortical lens fibers. This study unveils a new transport mechanism that maintains metabolic and antioxidative function of the lens.


2020 ◽  
Vol 319 (2) ◽  
pp. F312-F322
Author(s):  
Tarak Srivastava ◽  
Trupti Joshi ◽  
Yuexu Jiang ◽  
Daniel P. Heruth ◽  
Mohamed H. Rezaiekhaligh ◽  
...  

The ultrafiltrate flow over the major processes and cell body generates fluid flow shear stress (FFSS) on podocytes. Hyperfiltration-associated increase in FFSS can lead to podocyte injury and detachment. Previously, we showed that FFSS-induced upregulation of the cyclooxygenase 2 (COX2)-PGE2-prostaglandin E receptor 2 (EP2) axis in podocytes activates Akt-glycogen synthase kinase-3β-β-catenin and MAPK/ERK signaling in response to FFSS. Integrative MultiOmics Pathway Resolution (IMPRes) is a new bioinformatic tool that enables simultaneous time-series analysis of more than two groups to identify pathways and molecular connections. In the present study, we used previously characterized COX2 [prostaglandin-endoperoxide synthase 2 ( Ptgs2)], EP2 ( Ptger2), and β1-catenin ( Ctnnb1) as “seed genes” from an array data set of four groups analyzed over a time course. The 3 seed genes shared 7 pathways and 50 genes of 14 pathways and 89 genes identified by IMPRes. A composite of signaling pathways highlighted the temporal molecular connections during mechanotransduction signaling in FFSS-treated podocytes. We investigated the “proteoglycans in cancer” and “galactose metabolism” pathways predicted by IMPRes. A custom-designed PCR array validated 60.7% of the genes predicted by IMPRes analysis, including genes for the above-named pathways. Further validation using Western blot analysis showed increased expression of phosho-Erbb2, phospho-mammalian target of rapamycin (mTOR), CD44, and hexokinase II (Hk2); decreased total Erbb2, galactose mutarotase (Galm), and β-1,4-galactosyltransferase 1 (B4galt1); and unchanged total mTOR and AKT3. These findings corroborate our previously reported results. This study demonstrates the potential of the IMPRes method to identify novel pathways. Identifying the “proteoglycans in cancer” and “galactose metabolism” pathways has generated a lead to study the significance of FFSS-induced glycocalyx remodeling and possible detachment of podocytes from the glomerular matrix.


2018 ◽  
Vol 314 (1) ◽  
pp. F22-F34 ◽  
Author(s):  
Tarak Srivastava ◽  
Hongying Dai ◽  
Daniel P. Heruth ◽  
Uri S. Alon ◽  
Robert E. Garola ◽  
...  

Recently, we and others have found that hyperfiltration-associated increase in biomechanical forces, namely, tensile stress and fluid flow shear stress (FFSS), can directly and distinctly alter podocyte structure and function. The ultrafiltrate flow over the major processes and cell body generates FFSS to podocytes. Our previous work suggests that the cyclooxygenase-2 (COX-2)-PGE2-PGE2 receptor 2 (EP2) axis plays an important role in mechanoperception of FFSS in podocytes. To address mechanotransduction of the perceived stimulus through EP2, cultured podocytes were exposed to FFSS (2 dyn/cm2) for 2 h. Total RNA from cells at the end of FFSS treatment, 2-h post-FFSS, and 24-h post-FFSS was used for whole exon array analysis. Differentially regulated genes ( P < 0.01) were analyzed using bioinformatics tools Enrichr and Ingenuity Pathway Analysis to predict pathways/molecules. Candidate pathways were validated using Western blot analysis and then further confirmed to be resulting from a direct effect of PGE2 on podocytes. Results show that FFSS-induced mechanotransduction as well as exogenous PGE2 activate the Akt-GSK3β-β-catenin (Ser552) and MAPK/ERK but not the cAMP-PKA signal transduction cascades. These pathways are reportedly associated with FFSS-induced and EP2-mediated signaling in other epithelial cells as well. The current regimen for treating hyperfiltration-mediated injury largely depends on targeting the renin-angiotensin-aldosterone system. The present study identifies specific transduction mechanisms and provides novel information on the direct effect of FFSS on podocytes. These results suggest that targeting EP2-mediated signaling pathways holds therapeutic significance for delaying progression of chronic kidney disease secondary to hyperfiltration.


2014 ◽  
Vol 307 (12) ◽  
pp. F1323-F1333 ◽  
Author(s):  
Tarak Srivastava ◽  
Uri S. Alon ◽  
Patricia A. Cudmore ◽  
Belal Tarakji ◽  
Alexander Kats ◽  
...  

Hyperfiltration subjects podocytes to increased tensile stress and fluid flow shear stress (FFSS). We showed a 1.5- to 2.0-fold increase in FFSS in uninephrectomized animals and altered podocyte actin cytoskeleton and increased synthesis of prostaglandin E2 (PGE2) following in vitro application of FFSS. We hypothesized that increased FFSS mediates cellular changes through specific receptors of PGE2. Presently, we studied the effect of FFSS on cultured podocytes and decapsulated isolated glomeruli in vitro, and on solitary kidney in uninephrectomized sv129 mice. In cultured podocytes, FFSS resulted in increased gene and protein expression of cyclooxygenase (COX)-2 but not COX-1, prostanoid receptor EP2 but not EP4, and increased synthesis and secretion of PGE2, which were effectively blocked by indomethacin. Next, we developed a special flow chamber for applying FFSS to isolated glomeruli to determine its effect on an intact glomerular filtration barrier by measuring change in albumin permeability ( Palb) in vitro. FFSS caused an increase in Palb that was blocked by indomethacin ( P < 0.001). Finally, we show that unilateral nephrectomy in sv129 mice resulted in glomerular hypertrophy ( P = 0.006), increased glomerular expression of COX-2 ( P < 0.001) and EP2 ( P = 0.039), and increased urinary albumin excretion ( P = 0.001). Activation of the COX-2-PGE2-EP2 axis appears to be a specific response to FFSS in podocytes and provides a mechanistic basis for alteration in podocyte structure and the glomerular filtration barrier, leading to albuminuria in hyperfiltration-mediated kidney injury. The COX-2-PGE2-EP2 axis is a potential target for developing specific interventions to ameliorate the effects of hyperfiltration-mediated kidney injury in the progression of chronic kidney disease.


Sign in / Sign up

Export Citation Format

Share Document