scholarly journals The Coordination of Gene Expression within Photosynthesis Pathway for Acclimation of C4 Energy Crop Miscanthus lutarioriparius

2016 ◽  
Vol 7 ◽  
Author(s):  
Shilai Xing ◽  
Lifang Kang ◽  
Qin Xu ◽  
Yangyang Fan ◽  
Wei Liu ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 544
Author(s):  
Xuhong Zhao ◽  
Lifang Kang ◽  
Qian Wang ◽  
Cong Lin ◽  
Wei Liu ◽  
...  

As a potential energy crop with high biomass yield, Miscanthus lutarioriparius (M. lutarioriparius), endemic to the Long River Range in central China, needs to be investigated for its acclimation to stressful climatic and soil conditions often found on the marginal land. In this study, traits related to acclimation and yield, including survival rates, plant height (PH), stem diameter (SD), tiller number (TN), water use efficiency (WUE), and photosynthetic rates (A), were examined for 41 M. lutarioriparius populations that transplanted to the arid and cold Loess Plateau of China. The results showed that the average survival rate of M. lutarioriparius populations was only 4.16% over the first winter but the overwinter rate increased to 35.03% after the second winter, suggesting that plants having survived the first winter could have acclaimed to the low temperature. The strikingly high survival rates over the second winter were found to be 95.83% and 80.85%, respectively, for HG18 and HG39 populations. These populations might be especially valuable for the selection of energy crops for such an area. Those individuals surviving for the two consecutive winters showed significantly higher WUE than those measured after the first winter. The high WUE and low stomatal conductance (gs) observed in survived individuals could have been responsible for their acclimation to this new and harsh environment. A total of 61 individuals with productive growth traits and strong resistance to cold and drought were identified for further energy crop development. This study showed that the variation of M. lutarioriparius held great potential for developing energy crops following continuous field selection.


Proceedings ◽  
2019 ◽  
Vol 36 (1) ◽  
pp. 16
Author(s):  
Fernando Henrique Correr ◽  
Guilherme Kenichi Hosaka ◽  
Isabella Barros Valadão ◽  
Thiago Willian Almeida Balsalobre ◽  
Monalisa Sampaio Carneiro ◽  
...  

The development of biomass crops aims to meet industrial yield demands to become a profitable and sustainable activity. Achieving these goals in an energy crop such as sugarcane relies on breeding for sucrose accumulation, fiber content and tillering capacity. Sucrose storage depends on transport from leaves to culms driven by enzymes involved in sucrose synthesis and hydrolysis. High biomass genotypes often use photosynthesis products to produce lignocellulosic compounds to form the cell wall. To expand the understanding of the pathways related to these traits, we evaluated gene expression of two groups of genotypes contrasting in biomass yield, as well as testing for differences among members within the same group. First visible dewlap leaves were collected from six genotypes of each group to perform RNA-Seq. We found evidence that both groups differ with regard to genomic stress caused by polyploidy, as indicated by the enrichment of genes involved in transposition activity and defense response processes. Although carbon assimilation terms were not enriched, genes annotated with such terms were co-expressed with those coding for members of hormonal pathways. Sucrose phosphate synthase and hydrolytic enzymes coding genes were upregulated in leaves of sucrose-accumulating genotypes, as genes coding for enzymes involved in the biosynthesis of lignin. Compared to other high biomass accessions, the hybrid US85-1008 presented upregulation of photosynthesis-related genes probably due to its sink demand to store sugar in culms. This study expands the knowledge of gene expression in sugarcane leaves, revealing differences between and within phenotypically distinct groups.


Author(s):  
Craig H Carlson ◽  
Yongwook Choi ◽  
Agnes P Chan ◽  
Christopher D Town ◽  
Lawrence B Smart

Abstract Many studies have highlighted the complex and diverse basis for heterosis in inbred crops. Despite the lack of a consensus model, it is vital that we turn our attention to understanding heterosis in undomesticated, heterozygous, and polyploid species, such as willow (Salix spp.). Shrub willow is a dedicated energy crop bred to be fast-growing and high yielding on marginal land without competing with food crops. A trend in willow breeding is the consistent pattern of heterosis in triploids produced from crosses between diploid and tetraploid species. Here, we test whether differentially expressed genes are associated with heterosis in triploid families derived from diploid S. purpurea, diploid S. viminalis, and tetraploid S. miyabeana parents. Three biological replicates of shoot tips from all family progeny and parents were collected after 12 weeks in the greenhouse and RNA extracted for RNA-Seq analysis. This study provides evidence that nonadditive patterns of gene expression are correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow. Expression-level dominance was most correlated with heterosis for biomass yield traits and was highly enriched for processes involved in starch and sucrose metabolism. In addition, there was a global dosage effect of parent alleles in triploid hybrids, with expression proportional to copy number variation. Importantly, differentially expressed genes between family parents were most predictive of heterosis for both field and greenhouse collected traits. Altogether, these data will be used to progress models of heterosis to complement the growing genomic resources available for the improvement of heterozygous perennial bioenergy crops.


2021 ◽  
Author(s):  
Craig H Carlson ◽  
Yongwook Choi ◽  
Agnes P Chan ◽  
Christopher D Town ◽  
Lawrence B Smart

Many studies have highlighted the complex and diverse basis for heterosis in inbred crops. Despite the lack of a consensus model, it is vital that we turn our attention to understanding heterosis in undomesticated, heterozygous, and polyploid species, such as willow (Salix spp.). Shrub willow is a dedicated energy crop bred to be fast-growing and high yielding on marginal land without competing with food crops. A trend in willow breeding is the consistent pattern of heterosis in triploids produced from crosses between diploid and tetraploid species. Here, we test whether differentially expressed genes are associated with heterosis in triploid families derived from diploid S. purpurea, diploid S. viminalis, and tetraploid S. miyabeana parents. Three biological replicates of shoot tips from all family progeny and parents were collected after 12 weeks in the greenhouse and RNA extracted for RNA-Seq analysis. This study provides evidence that nonadditive patterns of gene expression are correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow. Expression-level dominance was most correlated with heterosis for biomass yield traits and was highly enriched for processes involved in starch and sucrose metabolism. In addition, there was a global dosage effect of parent alleles in triploid hybrids, with expression proportional to copy number variation. Importantly, differentially expressed genes between family parents were most predictive of heterosis for both field and greenhouse collected traits. Altogether, these data will be used to progress models of heterosis to complement the growing genomic resources available for the improvement of heterozygous perennial bioenergy crops.


2019 ◽  
Vol 99 (6) ◽  
pp. 841-851
Author(s):  
Yanan Xia ◽  
Jun Xu ◽  
Junyi Duan ◽  
Qingbo Liu ◽  
Hongmei Huang ◽  
...  

Miscanthus lutarioriparius, a domestic species of China, belongs to the genus of perennial rhizomatous Miscanthus and is a promising energy crop for biomass production. To establish an Agrobacterium tumefaciens transformation protocol and obtain transgenic plants co-expressing the Cry 2Aa# and Bar genes, an Agrobacterium-mediated transformation method for M. lutarioriparius was developed in this study. To inhibit tissue browning, optimized callus induction and regeneration media were developed. Embryogenic calli were efficiently induced from immature inflorescences on Murashige & Skoog (MS) medium containing 0.2 g L−1 citric acid. Agrobacterium tumefaciens EHA105 carrying pC3300 with the Cry 2Aa# and Bar genes were introduced into embryogenic calli. Six transgenic lines were selected by Basta screening and confirmed by genomic PCR. The herbicide tolerance of M. lutarioriparius transgenic plants was verified by spraying with glufosinate and expression of the Cry 2Aa# protein by ELISA. Therefore, an Agrobacterium-mediated transformation protocol for M. lutarioriparius was established and the co-expression of herbicide tolerance and Cry 2Aa# was successfully introduced with the system.


2018 ◽  
Vol 115 (8) ◽  
pp. 1931-1936 ◽  
Author(s):  
Ivan Reyna-Llorens ◽  
Steven J. Burgess ◽  
Gregory Reeves ◽  
Pallavi Singh ◽  
Sean R. Stevenson ◽  
...  

If the highly efficient C4 photosynthesis pathway could be transferred to crops with the C3 pathway there could be yield gains of up to 50%. It has been proposed that the multiple metabolic and developmental modifications associated with C4 photosynthesis are underpinned by relatively few master regulators that have allowed the evolution of C4 photosynthesis more than 60 times in flowering plants. Here we identify a component of one such regulator that consists of a pair of cis-elements located in coding sequence of multiple genes that are preferentially expressed in bundle sheath cells of C4 leaves. These motifs represent duons as they play a dual role in coding for amino acids as well as controlling the spatial patterning of gene expression associated with the C4 leaf. They act to repress transcription of C4 photosynthesis genes in mesophyll cells. These duons are also present in the C3 model Arabidopsis thaliana, and, in fact, are conserved in all land plants and even some algae that use C3 photosynthesis. C4 photosynthesis therefore appears to have coopted an ancient regulatory code to generate the spatial patterning of gene expression that is a hallmark of C4 photosynthesis. This intragenic transcriptional regulatory sequence could be exploited in the engineering of efficient photosynthesis of crops.


Author(s):  
W. K. Jones ◽  
J. Robbins

Two myosin heavy chains (MyHC) are expressed in the mammalian heart and are differentially regulated during development. In the mouse, the α-MyHC is expressed constitutively in the atrium. At birth, the β-MyHC is downregulated and replaced by the α-MyHC, which is the sole cardiac MyHC isoform in the adult heart. We have employed transgenic and gene-targeting methodologies to study the regulation of cardiac MyHC gene expression and the functional and developmental consequences of altered α-MyHC expression in the mouse.We previously characterized an α-MyHC promoter capable of driving tissue-specific and developmentally correct expression of a CAT (chloramphenicol acetyltransferase) marker in the mouse. Tissue surveys detected a small amount of CAT activity in the lung (Fig. 1a). The results of in situ hybridization analyses indicated that the pattern of CAT transcript in the adult heart (Fig. 1b, top panel) is the same as that of α-MyHC (Fig. 1b, lower panel). The α-MyHC gene is expressed in a layer of cardiac muscle (pulmonary myocardium) associated with the pulmonary veins (Fig. 1c). These studies extend our understanding of α-MyHC expression and delimit a third cardiac compartment.


Sign in / Sign up

Export Citation Format

Share Document