scholarly journals Genome-Wide Association Study of Septoria tritici Blotch Resistance in Ethiopian Durum Wheat Landraces

2017 ◽  
Vol 8 ◽  
Author(s):  
Yosef G. Kidane ◽  
Bogale N. Hailemariam ◽  
Dejene K. Mengistu ◽  
Carlo Fadda ◽  
Mario Enrico Pè ◽  
...  
2021 ◽  
Author(s):  
Anik Dutta ◽  
Daniel Croll ◽  
Bruce A. McDonald ◽  
Simon G. Krattinger

Abstract Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is a major constraint in global wheat production. The lack of genetic diversity in modern elite wheat cultivars largely hinders the improvement of STB resistance. Wheat landraces are reservoirs of untapped genetic diversity, which can be exploited to find novel STB resistance genes or alleles. Here, we characterized 188 Swiss wheat landraces for resistance to STB using four Swiss Z. tritici isolates. We used a genome-wide association study (GWAS) to identify genetic variants associated with the amount of lesion and pycnidia production by the fungus. The majority of the landraces were highly resistant for both traits to the isolate 1E4, indicating a gene-for-gene relationship, while higher phenotypic variability was observed against other isolates. GWAS detected a significant SNP on chromosome 3A that was associated with both traits in the isolate 1E4. The resistance response against 1E4 was likely controlled by the Stb6 gene. Sanger sequencing revealed that the majority of these ~100-year-old landraces carry the Stb6 resistance allele. This indicates the importance of this gene in Switzerland during the early 1900s for disease control in the field. Our study demonstrates the importance of characterizing historic landrace collections for STB resistance to provide valuable information on resistance variability and contributing alleles. This will help breeders in the future to make decisions on integrating such germplasms in STB resistance breeding.


2021 ◽  
Author(s):  
Maroua Ouaja ◽  
Bochra Bahri ◽  
Sahbi Ferjaoui ◽  
Maher Medini ◽  
Udupa M. Sri ◽  
...  

Abstract Background: Septoria tritici blotch (STB) has marked durum wheat production worldwide. This fungal disease is until today a challenge for farmers, researchers and breeders all united in the aim of reducing its damage and improving wheat resistance. Tunisian durum wheat landraces were reported to be valuable genetic resources for resistance to biotic and abiotic stresses and are therefore prominently deployed in breeding programs to develop new varieties adapted to fungal diseases as STB and to climate change constraints overall.Results: A total of 366 local durum wheat accessions were assessed for resistance to two virulent Tunisian isolates of Zymoseptoria tritici Tun06 and TM220 under field conditions. Population structure analysis of the durum wheat accessions, performed with 286 polymorphic SNPs (PIC >0.3) covering the entire genome, identified three genetic subpopulations (GS1, GS2 and GS3) with 22% of admixed genotypes. Interestingly, all of the resistant genotypes were among GS2 or admixed with GS2. Conclusions: This study revealed the population structure and the genetic distribution of the resistance to Z. tritici in the Tunisian durum wheat landraces. The grouping pattern of accessions appear to be associated, to some extent, with the geographical pattern of the landraces. We suggested that GS2 accessions were mostly introduced from eastern Mediterranean populations, unlike GS1 and GS3 that originated from the west. Resistant GS2 accessions belonged to landraces Taganrog, Sbei glabre, Richi, Mekki, Badri, Jneh Khotifa and Azizi. Furthermore, we suggested that admixture contributed to transmit STB resistance from GS2 resistant landraces to initially susceptible landraces such as Mahmoudi (GS1), but also resulted in the loss of resistance in the case of GS2 suscpetible Azizi and Jneh Khotifa accessions.


2019 ◽  
Vol 10 ◽  
Author(s):  
Shubin Wang ◽  
Steven Xu ◽  
Shiaoman Chao ◽  
Qun Sun ◽  
Shuwei Liu ◽  
...  

Planta ◽  
2019 ◽  
Vol 249 (4) ◽  
pp. 1157-1175 ◽  
Author(s):  
D. Nigro ◽  
A. Gadaleta ◽  
G. Mangini ◽  
P. Colasuonno ◽  
I. Marcotuli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document